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Abstract: The aim of this paper is to introduce a new measure of muscle activation level that can be used for force 
prediction from surface EMG signals, or as an input into the biomechanical models as well. It is called activity index 
and its range is between 0 and 1, 0 meaning that no motor units are active in the observed muscle, while 1 stands for 
the maximal activity of all motor units in the muscle. The important property of activity index is that it increases and 
decreases in the same way as the force produced by the observed muscle does. It is a measure of global muscle activity 
and represents the summation of innervation pulse trains of all active motor units. Activity index is based on motor 
control information rather than EMG amplitude processing, which is the most common approach in muscle force 
estimation task nowadays. This estimator of the motor control information is obtained from multi-channel surface 
EMG signals. Our method was compared to the method known as MUAP rate, which estimates muscle force as the 
number of motor unit action potentials in a time epoch, so it uses the motor control information for the estimation 
purpose as well. Experimental data was obtained from biceps brachii muscle during elbow flexion task on 5 subjects 
using 2D matrix of surface electrodes (13 rows by 5 columns). Isometric constant force contractions at three different 
force levels were performed, i.e. at 5, 10 and 30 % of maximal voluntary contraction. Torque produced at the elbow 
joint was measured simultaneously with surface EMG. The performance of both methods was measured with root 
mean square error (RMSE) between real and estimated force. Average for all 3 contractions of 5 subjects (total 15 
trials) produced the following results: activity index scored 13.46 % ± 6.26 % RMSE and MUAP rate scored 26.25 % ± 
6.36 % RMSE. In all individual trials activity index was a better force estimator. This is due to the technique for 
extraction of motor control information out of surface EMG signals. However, the presented study is only preliminary 
and since the performance of the activity index can be enhanced in many ways, the activity index has vast potential to 
become the most commonly used muscle force estimation technique. 
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1   Introduction 
Surface electromyography (sEMG) is an important tool 
in various research fields, including biomechanics and 
kinesiology, where it is used to understand how joints 
are loaded, passive tissues are stressed and muscles are 
activated under different working conditions [1]. 
Recently the use of sEMG is studied also in man-
machine interaction for an intelligent machine control.  
     SEMG has been studied for over fifty years as a non-
invasive measure of the muscle activity at voluntary 
contractions. It is a measure of the depolarization of 
muscle fibres, and when the sEMG signal is treated 
properly, it can be used as an indirect measure of muscle 
activity or force. Muscle force estimates can further be 
used in biomechanical models to estimate joint loads and 
kinematics [1]. However force estimation task is not so 
straightforward as it might seem. Forces or torques are 
usually measured externally about the joint, although 
they are in fact the resultant output of internal forces 
generated by muscles acting about the joints that they 

cross, as well as internal forces produced by stretching 
of ligaments and other passive tissues associated with 
the same joints. As a consequence the force of a single 
muscle is hardly measured and usually several muscles 
contribute to the detected forces. Moreover, when the 
electrical response of muscles is measured by sEMG, 
only part of the muscle and active motor units (MUs) 
can be detected, while measured force is actually 
produced by all MUs. 
     The paper is organized as follows. Section 2 contains 
a quick overview of the force estimation techniques. In 
the sequel, we reveal our new force estimation approach 
using activity index. The MUAP rate method is 
presented as well because it was chosen for comparison. 
Section 3 explains the experiments and shows 
experimental results, while the last section discusses the 
results and concludes the paper. 
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2 Force estimation techniques 
Force production in a muscle is regulated by the central 
nervous system (CNS), which regulates two main 
mechanisms, i.e. the recruitment/derecruitment of MUs 
and the modulation of their discharge rates. The greater 
the number of MUs recruited and their discharge 
frequency, the greater force will be exerted by the 
muscle. The same two mechanisms determine also the 
electrical activity in a muscle. Thus, a direct relationship 
between the sEMG and exerted muscle force might be 
expected [2]. 
     Methods based on the sEMG amplitude processing, 
such as average rectified value and root mean square, are 
commonly used for force estimation purpose. However, 
the sEMG amplitude is influenced not only by motor 
control aspects, but also by peripheral properties of the 
muscle, such as MU size, position (deep or superficial) 
and recording setup parameters (placement of the surface 
electrodes) [5]. Therefore the methods that are based on 
the motor control estimation were developed, such as 
MUAP rate and activity index, but it has to be 
considered that motor control information is also 
estimated from the sEMG signals, which means only a 
rough estimation of real motor control. Both methods are 
based on the motor control information, but they use 
totally different approach to extract this information 
from sEMG recordings. 
 
2.1 Activity index 
Activity index is a measure of muscle activation level. It 
was first introduced in [4] as a first stage of the 
correlation-based sEMG decomposition algorithm, 
known as convolution kernel compensation. Its range is 
between 0 and 1, 0 being produced, when there are no 
MUs active in the observed muscle, and 1 stands for the 
maximum activity of all MUs. Compared to sEMG 
amplitude activity index is smoother, which certainly is 
a good basis for force estimation. 
     To understand the principle of activity index, the 
considered sEMG model is presented briefly. The most 
feasible model for multi-channel sEMG recordings is the 
discrete, shift-invariant MIMO modelling [4]. Each 
input in such MIMO system is considered a MU 
innervation pulse train triggering the muscle, while the 
system responses correspond to the MUAPs as captured 
by the pick-up electrodes. The individual sEMG 
measurements represent the model outputs. 
 Let N be the number of inputs (active MUs in our 
case) and M the number of measurements (number of 
recorded signals from pick-up electrodes over the 
muscle). Suppose the number of inputs N smaller than 
the number of measurements M, then a positive integer 
K can be found, so that satisfies KM > N(L+K-1), where 
M is the number of measurements, N the number of 

inputs, L the length of MUAPs, and K an extension 
factor. The vector of measurements y(n) can be extended 
by K-1 delayed repetitions of each measurement. 
Correlation matrix of extended measurements ( )ny  is 
then calculated as: 
 ( ) ( ).Tn n=C y y  (1) 
 
Multiplying the extended measurements ( )ny  by the 
Moore-Penrose pseudo-inverse of C (symbol #), we 
introduce the activity index: 
 #( ) ( ) ( )T

AI n n n= y C y  (2) 
 
A more detailed explanation on the activity index 
calculation can be found in [3] and [4].  Fig. 1 depicts an 
example of one sEMG channel along with its activity 
index.  
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Fig. 1: Time plots of a single sEMG recording and its 
activity index (Ia) above show the activity index 
follows the changes in sEMG, but it is smoother. 
 
2.2 MUAP rate 
MUAP rate was introduced as a measure of the CNS 
input to the muscle [5]. It is obtained as the number of 
MUAPs per second, and equals the sum of firing rates of 
all active MUs. It reflects both parameters that CNS uses 
for motor control, the number of MUs and firing rate. 
 The first step extracts MUAPs from the sEMG. 
This task is performed by using continuous wavelet 
transform (CWT). Details of the approach can be found 
in [6]. Although this algorithm uses multi-channel 
information for MUAP extraction, only channels from 
the electrodes placed longitudinally to the muscle fibres 
are useful, because the propagation delay of MUAPs is 
searched between channels. Since our measurements 
were recorded using 2D arrays of electrodes, only the 
signals from the middle (3rd) electrode column were 
used. 
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 The MUAP extraction approach needs some 
specific parameters to be set. We used the same values 
as those reported in [5]. The algorithm started with 
calculating the CWT for the first channel. When the 
scalogram reached a maximum that was higher than a 
user predefined threshold (set to 0.1), a candidate 
MUAP was indicated. The algorithm then searched for 
candidate MUAPs located in the surrounding channels 
within a time delay corresponding to conduction 
velocities between 2 and 8 m/s. When the same shape 
was found in a minimum number of channels (set to 3), 
the candidate was considered a MUAP. Then, the CWT 
was calculated for the next channel. The algorithm 
cycled through all the channels in this way. Outputs of 
the algorithm were the firing moments of all detected 
MUAPs (see Fig. 2). Then the number of detected firing 
moments in the epoch of 1 second was calculated and 
this is the MUAP rate estimation. 

Fig. 2: Rows from 2-13 depict sEMG channels (inputed 
into the algorithm), while row 1 below shows the firing 
moments of detected MUAPs. 

 
 

3   Experimental Results 
5 young healthy male subjects participated in the 
experiment. SEMG signals were recorded with a matrix 
of 61 electrodes arranged in 5 columns and 13 rows (Fig. 
3). Inter-electrode distance was set to 5 mm. Recordings 
were performed in single differential configuration 
during isometric, constant-force contractions of the 
dominant biceps brachii muscle. The matrix was 
connected to four 16-channel EMG amplifiers (LISiN; 
Prima Biomedical & Sport, Treviso, Italy). The EMG 
signals were amplified, band-pass filtered (3 dB 
bandwidth, 10-500 Hz), sampled at 2500 Hz, and 
converted to digital form by a 12-bit A/D converter.  
     The dominant arm of the subject was placed into the 
isometric brace at 120°. Three five-second contractions 
at maximum voluntary contraction (MVC) force were 
performed separated by 2 minutes. Using the torque 
sensors, the maximum contraction force was measured 
and averaged over all three measurements.   

 
Fig. 3: 2D matrix (13 rows and 5 columns) of surface 
electrodes used for sEMG acquisition. 
 
     The sEMG signals were recorded during 30 seconds 
long contractions at 3 different constant force levels, i.e. 
5, 10, and 30 % MVC. The noise and the movement 
artefacts were visually controlled and reduced by 
applying water to the skin surface. The contraction 
force was measured by the torque sensor and displayed 
on the oscilloscope to provide the visual feedback to the 
subjects. 
     The performance of the methods was obtained by 
calculating the root mean square error (RMSE) between 
the recorded and the estimated force in percents: 

 
[ ]

[ ]
(%) 100real est

real

RMS F F
RMSE

RMS F
−

= ⋅  (3) 

Prior to calculation of RMSE, both the estimated and 
real force were smoothed by 1st order Butterworth low-
pass filter with cut-off frequency 10 Hz. Smoothed 
signals were normalized with respect to the maximum 
value. 
 

 
Fig. 4: Comparison of the estimation error for both 
methods on all trials from all subjects. The plot depicts 
median (middle line), upper and lower quartiles, 
whereas whiskers represent outliers. 
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The results of the method comparison are presented in 
Fig. 4 and Table 1. Activity index proved to be better 
estimator of muscle force, producing lower estimation 
errors than MUAP rate in all trials. 
 

Table 1: Comparison of the estimation error. 
 RMSE (%) 
Method mean std 
MUAP rate 26.25 6.36 
Activity index 13.46 6.26 

 
Fig. 5 and Fig. 6 show estimation errors for each 
individual trial for all subjects. 
 

 
Fig. 5: The figure shows RMSE versus contraction 
levels for each individual trial of each subject obtained 
by the activity index method: the different shapes stand 
for different subjects.   
 

 
Fig. 6: The same plot as Fig. 5, except it shows the 
results of the MUAP rate method. 
 
4   Discussion and conclusion 
Both methods compared in this study are based on the 
principle of motor control, i.e. the number of active 
MUs and their firing rates, but the way the motor control 
information is extracted from sEMG differs for the two 
methods. The MUAP rate extracts the number of 
MUAPs directly from sEMG measurements applying 
the CWT, while the activity index uses correlation-based 
approach instead. However, both estimates represent the 

global muscle activity (activity of all detected MUs). 
When additional MUs are activated, the global activity 
increases, because the firing moments of these MUs 
contribute to the global activity. The same happens if 
firing rate of already active MUs increases. The global 
activity decreases when MUs are derecruited or their 
firing rates decrease. 
     The MUAP extraction method has some drawbacks 
in comparison to the activity index, i.e. it operates only 
on linear array of electrodes that must be placed 
longitudinally to the muscle fibres. On the contrary, 
activity index can be calculated using the electrode 
arrays and, thus, considers more spatial information, 
which improves the activity estimation.  
     A drawback of both methods is that only the global 
muscle activity is observed, so the important information 
about which firing belongs to which MU is missing. 
From the point of presented methods, a new MU 
activated or the firing rate of an already active MU 
increased causes the same effect. But most widely 
accepted force models suppose each individual MU has 
a different force contribution [7]. From this aspect the 
global muscle activity itself is not enough to complete 
the force estimation. Ideally, an indicator would be 
needed to recover individual MUs and their strength at 
the same time. 
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