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Abstract: - The growing number of unauthorized activities and various trends of networking technologies in 

telecommunication network have added heavy burdens to telecommunication performance management (PM) 

system. One-class-support vector machine (OCSVM) is introduced in this paper, to automatically detect 

network anomalies. Real telecommunication performance data are employed in this paper to investigate the 

feasibility of OCSVM for anomaly detection. Experiments with small and large data sets demonstrate that 

OCSVM can not only detect the anomalies correctly, but also fast in a short time. The promising performances 

show that OCSVM is efficiently enough to meet with the anomaly detection task in telecommunication network. 
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1 Introduction 
Telecommunication networks are becoming more 

and more complicated, which brings about big 

operational problems for telecommunication 

operators. In order to indicate the performance of the 

network, network elements generate performance 

data. The data for each element has its own trend and 

typical values, which can characterize the network 

behavior and therefore is used for network anomaly 

detection. The anomaly is the abnormal behavior 

from normal trend and anomaly detection identifies 

the anomaly activities [1].  

The performance of anomaly detection relies on 

the following two parameters – accuracy and 

efficiency. Accuracy means the detection method 

and detect the anomalies correctly, and efficiency 

means that the detection has to be fast enough to 

investigate the performance data in a short given 

time.  

Several anomaly detection techniques and 

algorithms have been reported. One method is to 

define the abnormal conditions [2], however, due to 

the difficulty of defining unknown behaviors, these 

algorithms are always inappropriate for applications. 

Many algorithms, such as probabilistic techniques 

[3], neural network [4, 5], support vector machines 

[6, 7], K-nearest neighbor (KNN) [8] and Hidden 

Markov model [9], treat the anomaly detection as 

binary classification problem, however, strictly 

speaking they are not anomaly detection algorithms, 

as they require knowing what kind of anomaly is 

expecting, furthermore, these algorithms may be 

sensitive to noise in the training samples. 

Segmentation and clustering algorithms [10, 11] do 

not need to know the signatures of the series, the 

shortages are that they always need parameters to 

specify a proper number of segmentation or clusters 

and the detection procedure has to shift from one 

state to another state. Negative selection algorithms 

[12, 13] are designed for one-class classification; 

however, these algorithms can potentially fail with 

the increasing diversity of normal set and the 

computation procedure may not be efficient enough 

to finish detecting a large amount of data in a short 

given time. 

One-Class-SVM (OCSVM) was proposed to 

detect the outliers [14-17]. The idea of OCSVM is to 

map the data into a high dimensional Hilbert space, 

and then maximize the margin between the mapped 

data and the origin in Hilbert space. A trade-off 

parameter ν  is introduced in the objective function, 

which permits a maximum of %100×ν data 

(anomaly data) to stay at the same side with the 

origin. In other words, OCSVM can distinguish the 

anomalies from nominal data. The OCSVM 

overcomes the shortcomings of the traditional SVMs 

for coping with the one class data with noise and is 

supposed to possess good generation ability in 

outlier detection. In this paper, the OCSVM will be 

introduced to the telecommunication network PM 
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system, and will be verified via real 

telecommunication performance data for anomaly 

detection. 

The rest of this paper is organized as follows: 

Section 2 presents a brief introduction of the 

OCSVM. Section 3 introduces the PM anomaly 

detection system which includes the detector training 

module and anomaly detection module. Experiments 

are executed in Section 4 to see the feasibility of 

OCSVM for anomaly detection. Conclusion and 

future work are discussed in Section 5. 

 

 

2 A Brief Formulation of the OCSVM 
Considering a data set with },,,{ 21 lxxxT �= , 

NRx∈ , the task is to find a function )(xf that takes 

the value “+1” for most of the vectors in the data set 

(marked by stars in Fig. 1 for 2-dimensional case), 

and “-1” for the other very small part (marked by 

circles).  

 
Fig. 1 – A data set in the input space 

The strategies for the OCSVM are: first of all, 

map the input data into a Hilbert space H according 

to a mapping function )(xX φ= , as demonstrated in 

Fig. 2, and then separate the data from the origin to 

its maximum margin and a hyper-plane f(x) is built 

up to mark the boundary of separation. 

 
Fig. 2 – Data set in the output space after 

mapping 

The key idea for the separation is that it doesn’t 

really need all the data to be separated to the same 

side of the hyper-plane f(x), on controversy, a small 

number of points can be lying on the other side of the 

hyper-plane. In order to allow this, slack variables 

are introduced to the objective function of support 

vector machine, and the OCSVM solves the 

following quadratic optimization problem: 
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In Functions (1) and (2), w is the norm that 

perpendicular to the hyper-plane and ρ  is the bias of 

the hyper-plane. iξ  are slack variables acting as 

penalization in the objective function. )1,0(∈ν  is 

the trade-off parameter to balance between the 

normal and anomaly data in the data set. Deriving its 

dual representations, the OCSVM is to solve the 

following problems: 

1 Select the kernel function ),( 'xxK and the 

trade-off parameter ν , construct and solve the 

following optimization problem to find the 

solution ),,( **
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where )().(),( jiji xxxxK φφ=  is called as 

kernel function and can be with various format. 

2 Select any *α  with )/(10 * lνα << and 

calculate the bias ∑=
l

i

jii xxK ),(
*αρ , the vectors 

which satisfied )/(10 * lνα <<  are called 

support vectors. 

3 Integrate the decision function 

ρα −=∑
=

svN

i

ii xxKxf
1

* ),()( , if 0)( ≥xf , return +1; 

otherwise, return the negative value. svN  is the 

number of support vectors. 

 

 

3 Anomaly Detection System for 

Telecommunication Data 
 

3.1 Data Type and Anomalies in 

Telecommunication 
Performance management in telecommunication 

addresses the problems of intelligently managing the 

performance data. One function of PM is to detect 

the anomalies and then generate alarms according to 
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the detection results. There are two different types of 

PM data, qualitative data and quantitative data. 

Qualitative data, also known as key performance 

indicators (KPIs), measure the service quality. These 

indicator values are measured in percentage between 

zero and hundred. Instead of recording the 

percentage number, quantitative type data trace the 

traffic data at each service point in the network. Fig. 

3 shows the normal performance quantity traces of a 

service for the same day (Thursday) in five weeks. 

The values of the quantitative data are logged at 15 

minutes intervals throughout the day, and thus 96 

raw values per day per recording. In the Fig., the 

obvious anomaly data are marked with circles. The 

objective of the PM system is to flag these anomalies 

occurred in the network. 

 
Fig. – 3 Quantitative data for the same day in five 

weeks 

 

3.2 PM Anomaly Detection System 
Anomaly detection system can be built in two steps: 

Firstly, the offline data is used to train the OCSVM 

and generate the model function )(xf ; once testified, 

the model will be transferred to performance 

monitoring and management system to detect the 

anomalies in the online performance data.  

As mentioned in step 3 of Section 2, the real 

negative values of the anomalies will be returned. 

These negative values can in fact reflect the degree 

of deviation of abnormal events, the lower the value, 

the more abnormal the event. According to different 

values, the detected anomalies can be clustered into 

three types, namely: severe, medium and minor 

alarms. 

 

 

4 Experiments: Telecommunication 

Anomaly Detection Using OCSVM 
In this part, experiments on real data will be carried 

out to check the feasibility of OCSVM for 

telecommunication anomaly detection. The 

experiments will be concentrated on two aspects: 

accuracy and efficiency. In our experiments, we 

focus on the analysis of the traffic data, which is one 

type of the quantitative data. The anomaly detection 

in traffic data (Fig. 3) seems is more difficult than 

that of percentage data, due to its nonlinear nature of 

the performance curve.  

 

4.1 Experiment on a Small Data set 
 

4.1.1 Data Pre-processing and Feature Extraction  

This experiment is based on the data described in Fig. 

3. The traffic data in the Fig. possesses a nonlinear 

nature of the performance curve, and it differs in the 

ranges of the values among different weeks. Due to 

its nonlinear nature, it is unable to use the data 

directly for training the OCSVM model. There is 

knowledge for telecommunication network that 

network failures cause the sinking or rising of 

different PM indicators, as a result, the first order 

gradients of the data set are generated to compose the 

new feature for training and testing. That is, a feature 

set },,,{ 21 lyyyF �= of a training set 

},,,{ 21 lxxxT �= is defined as follows: 

},,2{,/

1

1

1

lixxy

y

iii �==

=

−

              (6) 

 

4.1.2 Training and Testing 

The five weeks data in Fig. 3 are divided into the 

training and testing data sets. The first week data are 

used as the training set, which is presented as Series 

1 in Fig. 3 and the other four weeks data presented as 

Series 2, 3, 4 and 5 are used for testing. Radial Basic 

Function (RBF) kernel is chosen as the kernel 

),( yxK , which can be expressed as: 

)2/(|||| 22

),( σyxeyxK −−=           (7) 

The parameter σ is chosen to be 2.5, and the 

trade-off parameter ν  in Function (4) is selected to 

be 0.01, which supposes that a maximum of 1% data 

points in the training set are abnormal. After training, 

the model obtained is applied to the testing data set. 

Fig. 4 and Fig. 5 illustrate the offline monitoring 

results for week3 and week 4, respectively.  

 
Fig. 4 – Testing results for week 3 
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In Fig. 4 and Fig. 5, Series 1 is the plot of the 

original traffic values for one week, and Series 2 

presents the results returned by the decision function 

f(x). These results perfectly match the human visual 

detection result. It can be seen from the Fig.s that one 

anomaly at data point 7 is successfully detected in 

week 3, and three anomalies at data points 7, 9 and 

94 are detected in week 4. 

 
Fig. 5 – Testing results for week4 

Some of the returned values from decision 

function ρα −=∑
=

svN

i

ii xxKxf
1

* ),()(  for week 4 are 

listed in Table 1. There are altogether three 

anomalies in week 4 with the returned values being 

-0.0801, -0.1376 and -0.2056. By comparing the 

returned value with their original traffic value, it can 

be concluded that the farther a value derivates from 

the normal trend, the smaller the returned negative 

value. 

Table 1 – Part of returned values from decision 

function for offline test on week 4 

Part of outputs from function 

ρα −=∑
=

svN

i

ii xxKxf
1

* ),()(  

Points 1-5 Points 6-10 Points 90-94 

0.0250 -0.0801 0.0451 

0.0594 0.0564 0.0394 

0.0284 -0.1376 0.0586 

0.0424 0.0433 0.0232 

0.0547 0.0528 -0.2056 

 

4.2 Experiment on Large Dataset 
After successfully detecting the anomalies in small 

data set, the experiment is moving on to a large data 

set for further testing. The large data set contains the 

traffic data of 31 continuous days, with 2976 values 

in total and every 96 values for one day. The original 

traffic data is shown as the lower plot in Fig. 6. 

First gradient feature is extracted for both the 

training and testing data. The parameter σ is set to be 

2.5, and the trade-off parameter ν  is 0.01. The 

results are displayed in the upper part of Fig. 6. 32 

abnormal data points are successfully detected using 

the OCSVM detector.  
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Fig. 6 – Training and testing on a 31 days traffic 

dataset 

 

4.3 Experiments on Efficiency 
As mentioned in introduction, the 

telecommunication networks are becoming larger 

and larger, and each operational element will 

generate performance data in a given time interval. 

The PM investigation system has to efficient enough 

to finish all the detection in the given time.  

For example, generally, a PM AI module should 

be capable of processing up to 25-50 million records 

per hour. This is translated into about 15-20 

thousands records per second. But, if the PM AI 

cannot meet with this enquiry, the system will be in 

risk. 

In order to check the execution time, two larger 

data sets are selected for detection, with 23,232 and 

45,398 samples each. The PC used for training and 

detection are characterized as: Pentium(R) D CPU 

2.8GHz, and 1.99GB of RAM. The training time and 

detection time are shown in Table 2.  

Table 2 – Execution time for detection 

 
Data set with 

23,232 samples  

Data set with 

45,398 samples  

Total 
execution time 

(ms) 

949 1796 

Samples per 
second 

24,480 25,300 

The results in table 2 clearly show that the 

detector can cope with around 25-25 thousands 

samples per second, the speed exceeds the 

fundamental enquiries of a PM system. Consider that 

several CPUs will be adopted for detection, and 

additionally, multiple threads techniques will be 
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utilized for online detection, the real online PM 

system can only be even faster. 

 

 

5 Conclusion 
This paper proposes a PM anomaly detection system 

based on the OCSVM. By solving an optimal 

problem with slack variables and trade-off 

parameter, the OCSVM can capture most of the data 

in a data set as normal in a “small” region, and flag a 

small part of data as anomalies. The feasibility of 

OCSVM for telecommunication anomaly detection 

is verified with the real offline data. Experiments 

show that the system is accurate and efficient enough 

to successfully detect the anomalies in the given time 

interval. 
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