
Evaluation of Training Methods for Conditioning of Fuzzy Based
Maintainability Metric

JITENDER KUMAR CHHABRAa, SURENDER SINGH DAHIYAb, SHAKTI KUMARc

a, bNational Institute of Technology, Kurukshetra-136119 (INDIA)
cInstitute of Science & Technology, Klawad, Yamunanagar(INDIA)

Abstract: - The software maintainability can be ensured by carefully control of its software development process. An early
measurement of maintainability starting from design phase is always desirable to produce maintainable software. Some of the
researchers have tried to use soft computing techniques to measure maintainability. In spite of their reported validations, these
models are not calibrated and no attention has been paid to evaluate and improve the stability of these methods.
An attempt has been made in this paper to evaluate and compare several methodologies for improving the numerical stability of a
fuzzy logic based maintainability metrics system. Tuning of fuzzy system parameters is carried out using genetic algorithm with
system condition number as objective function for optimization. A number of alternates are considered, in which training data sets
are generated using different methods and these sets are used to evaluate objective functions in GA and accordingly fuzzy
parameters are tuned. In order to show the advantage of such stability improvement, real projects’ maintainability data is used and
our study indicates that fuzzy model performance gets increased after conditioning.

Key-Words: - Leave software maintainability, soft computing, software metrics.

1 Introduction
For proper control of a software development process, we
need to measure software attributes at every step of software
development. The measured crisp value of an attribute
provides right direction to software managers to take efficient
and effective decisions. Some of the measures are dependent
on many attributes and hence need integration, which may not
be feasible using mathematical formulas, if attributes are of
diverse nature. For such types of integration, fuzzy modeling
is ideal [1]. In the last decade, several fuzzy based integrated
measures have come up in the literature [2, 3].
Maintainability is one such hybrid attribute, whose crisp value
depends on many lower order attributes such as source code
size, comment ratio, software complexity, source code
readability, documentation quality etc. Several researchers
have stressed on the early measurement of maintainability
starting from design phase itself so that timely steps could be
taken for producing maintainable software [3-5].
Several models have been proposed for finding
maintainability of software in different perspective. [2, 7-18].
Earlier researchers used to consider only source code and its
allied comments for program comprehension [7-9], but later
with increased complexity of software, understanding other
software artifacts such as design documents were also
assumed compulsory [2, 3, 19]. As there are several diverse
attributes collected from different artifacts of software, which
are distinct in measurement and performance scale, efforts are
made to integrate these, in order to get a single crisp value of
maintainability. For this type of integration fuzzy modeling
was used by several authors [2, 3, 10].

2 Model under Consideration
For the purpose of evaluation and experimentation, we have
considered a four-input-parameters maintainability metrics
computed with help of a fuzzy model proposed by Aggarwal
et. al. [3]. In this authors have considered average cyclomatic
complexity (ACC), readability of source code (RSC),

Documents quality (DOQ) and understandability of software
(UOS) as important attributes for the measurement of
maintainability. Average Cyclomatic Complexity (ACC) is
defined as average of Cyclomatic complexities of all modules.
Above model considers ACC as one of the contributing factor
toward software maintainability. A source code must be
supported by enough comments to make it readable for the
purpose of software comprehension. In the above model RSC
is measured using comment ratio in source code. DOQ
quantifies the quality of documents with the help of fog’s
index. Fog index counts the length of sentences and difficulty
of words. Higher the fog’s index less is the quality of
documentation for the purpose of understandability. To
measure the UOS, degree of similarity of usage of symbols
between the language of documentation and language of
source code is considered using Laitnen’s tool.

Knowledge Base

Maintain
-ability

Data Base Rule Base

Fuzzification
Module

Inference
Engine

DeFuzzification
Module RSC

DOQ
UOS

ACC

Figure 1: Maintainability Fuzzy System

The fuzzy system, as shown in Figure 1, proposed in [3],
comprises of four basic elements: fuzzifier, fuzzy knowledge
base, fuzzy inference engine, and defuzzifier. Fuzzification
module is used to change the crisp values of inputs into fuzzy
values based on the membership functions (MFs) defined in
knowledge base. Fuzzy knowledge base is comprised of two
parts: database in which MFs are stored and rule base which
stores the decision mechanism of model. It computes the
maintainability in fuzzy domain consists of three sub modules;
namely rule composition, implication and aggregation
module. Rule composition transforms the fuzzified antecedent
part of the rule to single numerical figure that is used to

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 145

implicate the output of a rule. Aggregation module then
aggregates the individual outputs of rules to a single fuzzy set.
Defuzzifier reverts the fuzzy output of inference module back
to crisp values, which in turn is the output of the fuzzy system.
Fuzzy system’s performance largely depends on the accuracy
of definition of membership function and correctness of rule
base.
In order to fuzzify the inputs, three MFs for the ACC, RSC,
DOQ and UOS were chosen and five MFs were chosen for
output Maintainability. In order to measure software
maintainability using the four input metrics, the rulebase for
the system consisted of the eighty-one rules as follows:
1. If (ACC is LOW) and (RSC is GOOD) and (DOQ is
HIGH) and (UOS is MORE) then (MAINTAINABILITY is
V_GOOD).
2. If (ACC is AV) and (RSC is GOOD) and (DOQ is
HIGH) and (UOS is MORE) then (MAINTAINABILITY is
V_GOOD).
3. If (ACC is HIGH) and (RSC is GOOD) and (DOQ is
HIGH) and (UOS is MORE) then (MAINTAINABILITY is
GOOD).
…
.81. If (ACC is HIGH) and (RSC is POOR) and (DOQ is
LOW) and (UOS is LESS) then (MAINTAINABILITY is
V_POOR).

3. Stability Analysis of the Fuzzy System
A fuzzy model is essentially a transfer function, which maps
input space to output space. A good model, be it mathematical
model or heuristic model, must be stable consistent, cohesive
and robust for its better performance. A model is called
numerically stable, if given small perturbation in inputs,
output doesn’t vary marginally. This is also called structural
stability [20]. Aggarwal et. al. in [21] carried out sensitivity
analysis of a fuzzy model and a neural network model of a
specific chosen problem. In due course, authors compared the
stability of both models with the help of empirical evidence.
Stability of system is derived by calculating condition number
for each input parameter. Condition number of each input
must be low for the whole system. Condition number is
defined as the maximum value of the ratio of the relative
margin in the output to the relative change in data over the
problem domain and can be expressed in the form of an
equation as shown below:

)1......(
),,(

),,(),,(

x

x

zyxf

zyxfzyxxf

x
CN

∆
×

−∆+
=

where
x

CN is condition number corresponding to x input,

),,(zyxf is the fuzzy model function to measure
maintainability and zyx ,, are the input parameters and x∆ is
the perturbation in the input parameter x . Perturbation must
be very small and in our experiments we have taken this as 0.1
percent of input parameter. Functions with a condition number
closer to one are “more stable” or “well conditioned” as
compared to functions with a condition number greater than
one.
Authors in [21] concluded that neural network based models
are more stable than fuzzy models. But unavailability of
sufficient training data and large training time of neural

network are deterrent in adopting neural network scheme for
modeling purpose. Further if the system for which, model is
prepared, is a new system, then we don’t have any alternative
but to develop fuzzy model for such systems. Therefore, fuzzy
system models must satisfy the stability criterion. When the
system is continuous and parameters are monotonic, dips and
steep-changes in the solution-space (surface view) indicates
an ill-conditioned and unstable system. These dips and steep
changes are measured using the concept of condition number
as described above. So, if we need to make system stable,
which has to be, the condition number needs to be minimized.
In previous paper [22], an attempt has been made to improve
the stability of a fuzzy model based measurement of three-
inputs software maintainability metric [2] by transforming the
unconditioned system to the conditioned one using genetic
algorithm. The criterion of conditioning/objective function
was chosen as the overall stability of system, which is
aggregated by taking mean squared value of condition number
of each input. The minimization of the defined objective
function results into defining revised boundaries of the
membership functions of each of the inputs under
consideration. In our previous methodology, we have only
considered the tuning of MFs by training fuzzy model by
equispaced points training data set. A training data set is made
by taking equispaced points from each input and then merging
these in all permutations, which in turn is used in objective
function. The results in previous paper were quite encouraging
and prompted us to experiment with new alternatives of
different training data sets and try to find out the best method
for tuning MFs of fuzzy system with minimum condition
number.

4. Fuzzy System Conditioning using Genetic
Algorithms
As illustrated in Figure 2, initially, GA generates a random
population of individuals called chromosomes and then based
on an objective function it ranks and selects individuals to
build a mating pool in order to generate next generation
offsprings using genetic operators such as crossover or
mutation, which have the higher possibility of being fitter than
the present individuals. In fuzzy system conditioning,
boundaries of membership functions of already unconditioned
system are varied and each individual in population defines
new revised boundaries, which is also a solution to the
problem, however with a varying fitness. Now each solution is
checked for its fitness based on condition criterion described
in section III.
Fuzzy system knowledge base has two main components:
MFs of inputs & outputs and the rule base. These components
are created using expert knowledge. Sometimes, when the
system is not a legacy system, there are enough chances that
definitions of membership functions and rule base are not
optimal [23]. This is the main source of instability in the
system and same is true for the model under consideration.
Hence our problem is reduced to optimize the MFs and the
rule base such that the condition numbers of all inputs of the
system decreases. In the present study, we have considered
optimization of the MFs only using different alternative of
training data sets with a view to adjudge the best method of

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 146

Initialization population

Calculate Fitness Values

Select Mating Pair based on fitness Value

Crossover to produce offsprings

Mutate off spring genes

Insert Offspring into Population

Stop Criteria
Met?

Finish

NO

YES

Figure 2: Major Steps in GA Algorithm

training in order to get a stable fuzzy model. We have carried
out experiments in Matlab framework, in which MFs of fuzzy
model described above are tuned using GA such that overall
condition of the system is reduced. As there is no guarantee of
settling time of a condition number to a minimum specified
value, therefore GA is iterated for a fix number of times. In
our experimentation setup there are 4 runs of 100 generation
each for one GA optimization.

5. Genetic Encoding of Fuzzy System
In the four-inputs and single-output system discussed above,
each MF is trapezoidal (triangular MF is a special case of
trapezoidal MF), thus each MF has four parameters, which
must be adjusted for optimization. So a chromosome
(probable solution) will contain individual genes in the form
of the parameters of all the MFs of inputs and outputs. In the
model under consideration, there are total 17 membership
functions. So there will be 17*4=68 genes in a chromosome.
In order to tune a MF, we allowed 10% variation in the
existing range of each parameter. Thus if a parameter value of
a MF of an input is 5 and input range is 1 to 13, then this
parameter value is tuned within the range of 5-0.1*(13-1) and
5+0.1(13-1) i.e within the range of 3.8 to 6.2. A pictorial
encoding scheme is shown below in figure 3.

6. Objective function definition
This is a multi-objective problem, as we need to decrease the
condition number of each input. The condition number of each
input can be calculated using equation 1 and is shown below
in form of equation 2-5:

)2..(
),,,(

),,,(),,,(

ACC

ACC

UOSDOQRSCACCf

UOSDOQRSCACCfUOSDOQRSCACCACCf

ACCCN
∆

×
−∆+

=

)3..(
),,,(

),,,(),,,(

RSC

RSC

UOSDOQRSCACCf

UOSDOQRSCACCfUOSDOQRSCRSCACCf

RSCCN
∆

×
−∆+

=

)4..(
),,,(

),,,(),,,(

DOQ

DOQ

UOSDOQRSCACCf

UOSDOQRSCACCfUOSDOQDOQRSCACCf

DOQCN
∆

×
−∆+

=

)5..(
),,,(

),,,(),,,(

UOS

UOS

UOSDOQRSCACCf

UOSDOQRSCACCfUOSUOSDOQRSCACCf

UOSCN
∆

×
−∆+

=

An integrated objective function is calculated by taking the
mean square value of all condition numbers, corresponding to
each of the inputs. This number is called condition number of
the system CNSYS and is used as objective function for GA.
CNSYS = MSE(CNACC, CNRSC, CNDOQ, CNUOS)……(6)

Figure 3. Defining a chromosome

1
L O W A V H IG H

3 8 1 3

…

…

… V_GOOD

GOOD

AVG

POOR
V_POOR

1

2 4 6 8 0 10
MFs of Input1... MFs of Input2... MFs of Input3... MFs of Input4... MFs

of output
1 2 3 4 5 6 7 8 9 10 1

1
1
2

:::::::::::::::::::::: 6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

0 1 3 8 3 8 8 13 8 13 1
3

1
5

:::::::::::::::::::::: 6 8 8 1
0

8 1
0

1
0

1
2

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 147

7. Generation of Training Data for MFs Tuning
In our experimentations, we have developed two modules.
First is the main genetic module and is based on the algorithm
described above. Second module defines an objective function
which is used to calculate system condition for a given data
set of inputs (here called training data set and is a matrix of
2401×4 size) based on equation 2, 3, 4, 5 and 6. Main GA
module generates various acceptable solutions. For each
chromosome in each population, GA module changes only
membership functions’ parameters from the unconditioned
fuzzy model keeping rule base unchanged and then in
objective function, fuzzy inference system evaluates output of
system with respect to inputs provided in form of training
data. Subsequently, an input is perturbed throughout in the
training data set, and again same fuzzy system is used to
evaluate outputs with respect to this perturbed data set. These
two output sets are used then to calculate condition number of
the system w.r.t. the particular input by following equation 2
to 5. Same procedure is repeated for other inputs and then
following equation 6, we get overall system conditioning for
particular chromosome. We have formulated six methods for
constructing training data for optimization as described below:
a) Conditioning with different random data set for each
solution in population
In this method a new random numbers data set of 2401 points
are generated for each chromosome in population of one
generation of GA algorithm for evaluating condition number
of inputs and whole system.
b) Conditioning with same random data set for each solution
in population
This method generates random numbers data set of 2401
points once in Main GA module and same is used for finding
fitness for each chromosome in each population of GA
algorithm.
c) Conditioning with one input equispaced and same random
numbers data set for each of rest inputs for each solution in
population
Here main function generates two data sets of 2401 points
each from all inputs’ ranges. One data set contains equispaced
points from all inputs and another set contains random
numbers from all inputs. Then both of these sets are used to
find the condition numbers of all inputs.
d) Conditioning with one input equispaced and different
random numbers data set for each of rest inputs for each
solution in population
Here main GA function generates one data set which contains
equispaced numbers from all inputs and another set which
contains random numbers from all inputs is created by the
objective function each time for each chromosome. Then
these both sets are used to create four training data sets for all
inputs by following the same procedure as described in
method three.
e) Conditioning with all permutation generated by taking
equispaced points from each input for each solution in
population
In this method seven equispaced points are taken from each
input space and then these are combined in all permutations to
form a training data set of 2401(7^4) points, which is used to
calculate condition numbers for each input. We have taken

only seven equispaced points from each input. However it can
be less or more.
f) Conditioning with each input equispaced points summation
for all solutions in population
Here from each input space 2401 equispaced points are
generated and then these are clubbed together to form a
training data set of 2401 points.
In order to validate the methodologies, these need to be tested
with a new data set. So once the training is completed, these
methods are tested with a data set of 10000 points. This data
set is randomly generated for all inputs and is same for all
above defined alternatives. To fully randomize the output, we
repeated this process ten times and then average system
condition number of all ten outputs is taken for comparison.
Table 1 lists condition number of unconditioned and
conditioned system for all six alternatives.

TABLE 1: Comparison of condition numbers of
unconditioned and unconditioned systems

Methods CNACC CNRSC CNDOQ CNUOS CNSYS
Unconditio-
ned System 5.0622 11.945 13.314 4.4294 96.087

Conditioned
System with
1st Method

2.9006 11.943 11.973 5.629 82.631

Conditioned
System with
2nd Method

2.1427 4.7642 5.5817 2.2429 16.064

Conditioned
System with
3rd Method

2.7784 5.8229 5.9942 3.0474 22.023

Conditioned
System with
4th Method

3.6703 4.5191 6.5657

3.657

23.258

Conditioned
System with
5st Method

1.895 7.6208 4.4021 8.7757 40.451

Conditioned
System with
6st Method

2.384 13.577 5.8428 4.6509 62.599

Figures 4(a) to 10(a) show the graph of input UOS versus
maintainability while taking constant values of other three
inputs. Figure 4(a) shows Maintainability curve with respect
to UOS input parameter in unconditioned System. There are
steep changes and dip (marked by arrow) in the
maintainability curve. Figures 4(a) to 10(a) show surface view
of fuzzy model with UOS & RSC on input axes and
Maintainability on output axes. Figures 4(b) shows surface
view of fuzzy model with UOS & RSC on input axes and
Maintainability on output axes in unconditioned system. This
is also comprised of steep changes in maintainability with a
gradual increase in input-parameters.

8. Results & Discussions
A per Table 1, Condition number for each input parameter is
reduced in all six methods. From table, it can be deduced that
Second Method is best, in which overall system condition has
been reduced from 96.087 to 16.064. This is a six fold
decrease in condition number of the system. It is a significant
improvement in the stability and system can be further
stabilized with increased number of GA iterations. Others
better methods are third & fourth methods, for which
condition numbers are 22.023 and 23.258 respectively.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 148

UOS Vs Maintainability (b) UOS & RSC Vs

Maintainability

(a) (b)
Figure 4: unconditioned System

(a)

(b)

Figure 5: System is conditioned with first method

(a)

(b)

Figure 6: System is conditioned with second method

(a) (b)

Figure 7: System is conditioned with third method

(a) (b)

Figure 8: System is conditioned with fourth method

(a) (b)

Figure 9: System is conditioned with fifth method

(a) (b)

Figure 10: System is conditioned with sixth method

In these three methods, which yield good conditioning,
condition numbers of all the inputs as well as whole system
have been less as compared to unconditioned system while on
the other side first, fifth and sixth methods one or two inputs
condition number is larger than unconditioned system.
Although in these methods, whole system condition number is
reduced but these also destabilize system at other inputs.
Figure 9(a) is of unconditioned system, in this as pointed by
an arrow, there is a dip at axis (3.65, 870) which violates
model consistency and continuity. In all other figures this dip
has been removed completely. If we analyze the surface view
of fuzzy model with UOS & RSC on input axes and
Maintainability on output axes of figure 9(b), there are steep
changes in maintainability given small variations in inputs for
unconditioned system.
These steep changes in maintainability have been replaced by
smoother curves in figures 10(b) to 15(b) for conditioned
system for the same surface view. If we compare the surface
view of maintainability versus RSC & UOS of unconditioned
system (figure 9(b)) with conditioned system of second
method (Figure 11(b)) which has the least condition number,
surface view is smoothest of all other methods. So we can
deduce that system can be made stable or well conditioned by
following method number 2 or 3 or 4 in that order.
Authors in [3] have validated their model by collecting
empirical data of maintenance time of eight software projects
and same has been used to evaluate the performance of the
model. In this paper, we have used the same data to check the
effect of conditioning on fuzzy system performance. Table 2
shows the computed maintainability values from
unconditioned fuzzy model and other fuzzy model
conditioned with all the six alternatives, against input data
from eight projects. In the last row of table 2 computed
maintainability values are correlated with average
maintenance time of eight projects. Here, we find that
conditioning does not deteriorate the correlation in all the
methodologies, rather it has been increased in each method.
Although these methodologies are not targeted to increase
correlation between maintainability and average maintenance
time but this favorable change further proves the merit of our
proposed methodologies for conditioning the system.

9. Conclusion
This paper has presented six different alternatives to generate
training data in order to find out the best possible method of
conditioning. Each of the methods was evaluated using a new
data set of 10000 points. Our initial study indicates that if
training data set is created randomly from each input space
and system is conditioned using this training data then this
method outperforms other methods by making system more
stable on average basis. Methods with one input equispaced
and same random numbers data set for each of rest inputs for
each solution in population or with one input equispaced and
different random numbers data set for each of rest inputs for
each solution in population also give better results as
compared to the rest three methods. These alternatives are also
validated against eight real projects average maintenance time
by computing maintainability from the conditioned systems
and increased correlation proves the worthiness of these
methodologies.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 149

Table 2: Correlation between observed maintenance time and computed maintainability values

Maintainability of system when conditioned with
Project
Number

ACC

RSC

DOQ

UOS

Corrective
maint-
time

Unconditioned
system

First
Method

Second
Method

Third
Method

Fourth
Method

Fifth
Method

Sixth
Method

1 8.5 3.8 11 355 11.300 3.610 3.615 3.888 3.640 3.212 3.983 4.460
2 12 7.7 15 528 21.700 7.370 6.726 6.332 6.674 6.958 7.124 6.700
3 13 5.7 11 492 18.300 5.110 5.538 5.400 5.277 5.542 5.543 5.707
4 5.4 8.3 12 567 18.000 6.810 6.027 5.311 5.546 6.116 5.966 5.692
5 15 8.9 12 363 21.100 8.000 7.492 6.750 7.331 7.275 7.409 7.051
6 7.5 7.4 8.9 390 16.100 4.560 4.826 4.948 5.127 5.290 5.152 5.763
7 11 9.2 12 451 17.900 7.070 6.758 6.473 6.438 6.375 6.942 6.543
8 9.1 6.9 13 479 17.200 6.000 6.240 6.046 6.024 5.986 6.456 6.087

Correlation between computed maintainability values and
observed maintenance time 0.873 0.902 0.875 0.913 0.961 0.899 0.912

References
1. W. Pedrycz, J. F. Peters, “Computational Intelligence and
Software Engineering”, World Scientific, Singapore, 1998.
2. K. K. Aggarwal; Y. Singh; J. K. Chhabra, “An Integrated
Measure of Software Maintainability”, IEEE Proceedings of
Annual Reliability and Maintainability Symposium, RAMS-
2002, Seatle Westin, USA, Jan 28-31, 2002, pp. 235-241.
3. K. K. Aggarwal; Y. Singh; J. K. Chhabra, “A Fuzzy
Model for Measurement of Software Maintainability & Its
Performance”, Int. Journal of Electronics & Computer
Science, USA Vol 6, No2, 2004 pp. 31-43.
4. W.M. Osborne, E.J. Chikofsky, “Fitting Pieces to the
Maintenance Puzzle”, IEEE Software, Vol 7, No 1, pp. 11-12,
1990.
5. N. F Schneidewind, “The State of Software
Maintenance”, IEEE Transactions on Software Engineering,
Vol SE-13, No 3, pp. 303-310, 1987.
6. T. M. Pigoski, “Practical Software Maintenance – Best
Practices for Managing Your Software Investment”, John
Wiley & Sons, New York, NY, 1997.
7. P. Oman; “HP-MAS: A Tool for Software Maintainability
Assessment”, U.I. Software Engineering Test Lab Report #92-
07-ST, August 1992.
8. F. Zhuo, B. Lowther, P. Oman, J. Hagemeister,
“Constructing and Testing Software Maintainability
Assehssment Models,” First International Soflware Metrics
Symposium, IEEE Computer Society Press, Baltimore,
Maryland, May 21-22, 1992, pp. 423-433.
9. J. Munson, T. Khoshgoftaar, “The Detection of Fault-
Prone Programs,” IEEE Transactions on Software
Engineering, Vol. 18, No 5, May 1992. pp. 423-433.
10. J. K. Chhabra, K. K. Aggarwal, Y. Singh, “A Fuzzy
Model for Measurement of Software Understandability”,
International Symposium on Performance Evaluation of
Computer & Telecommunication Systems SPECTS’03,
Montreal, Canada, July 20-24, 2003.
11. J. K. Chhabra, K.K. Aggarwal, Y. Singh, “Code and Data
Spatial Complexity: Two Important Software
Understandability Measures”, Information and Software
Technology, Vol. 45, 2003, pp. 539–546.
12. J. K. Chhabra, K.K. Aggarwal, Y. Singh, “Measurement
of Object-Oriented Software Spatial Complexity”, Information
and Software Technology, Vol. 46, No 10, August 2004, pp.
689-699.
13. B. S. Mitchell, S. Mancoridis, “On the Automatic

Modularization of Software Systems using the Bunch Tool”,
IEEE Transactions on Software Engineering, Vol. 32, No. 3,
March 2006, pp.193 – 208.
14. F. Xia, “A Change Impact Dependency Measure for
Predicting the maintainability of Source Code”, Proceedings
of the 28th Annual International Computer Software and
Applications Conference, COMPSAC-2004. Vol. 2, 2004, pp.
22 – 23.
15. J. K. Chhabra, K.K. Aggarwal, Y. Singh, “Measuring
Maintainability of Object-Oriented Software”, International
Journal of Management And Systems IJOMAS, Vol 20, No 2,
2004, pp. 139-156.
16. M. Humphrey, S. Henry, J. Lewis, “Evaluation of the
Maintainability of Object-Oriented Software”, IEEE Region
10 Conference on Computer and Communication Systems,
September 1990.
17. M. Kiewkanya, N. Jindasawat, P. Muenchaisri, “A
Methodology for Constructing Maintainability Model of
Object-oriented Design” Proceedings of Fourth International
Conference on Quality Software, QSIC, 2004 pp. 206 – 213.
18. V.S. Alagar, L. Qiaoyun, O.S. Ormandjieva, “Assessment
of Maintainability in object-oriented Software” 39th
International Conference and Exhibition on Technology of
Object-Oriented Languages and Systems, TOOLS 39, 29 July-
3 Aug. 2001, pp. 194 – 205.
19. L. Briand, C. Bunse, J. Daly, “An Experimental
Comparison of the Maintainability of Object-Oriented and
Structured Design Documents”, Proceedings of International
Conference on Software Maintenance, 1-3 Oct. 1997, pp. 130
- 138.
20. http://en.wikipedia.org/wiki/Structural_stability
21. K.K. Aggarwal; Y. Singh; P. Chandra; M. Puri,
“Sensitivity Analysis of Fuzzy and Neural Network Models”,
ACM SIGSOFT Software Engineering Notes, Vol. 30, No. 4,
July 2005, pp. 1-4.
22. S. S. Dahiya, J. K. Chhabra, S. Kumar, “Use of Genetic
Algorithm for Software maintainability Metrics'
Conditioning” 15th International Conference on Advanced
Computing and Communications, ADCOM- 2007 (accepted
for publication)
23. I. Rojas, J. Gonzalez, H. Pomares, F. J. Rojas, F. J.
Fernandez, A. Prieto, “Multidimensional and Multideme
Genetic Algorithms for the Construction of Fuzzy System”,
International Journal of Approximate Reasoning, Vol. 26,
2001, pp. 179-210.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 150

