Evaluation of Ecological Preservative Management Using Multi-Stage Decision and FAHP Process in a Mountainous Maoli site, Taiwan

 KUEI-YANG WU^{a,*}, WANN-MING WEY^a, WEN-ZER LIN^b
^a Department of Architecture, National United University, Maoli, TAIWAN 36003, R.O.C.
^b Institute of Earth Science, Academia Sinica, NanKang, Taipei, TAIWAN 11517, R.O.C.

Abstract: The paper presents a fuzzy analytic hierarchy (FAHP) and multi-stage objective model for optimal ecological preservative management, which determines the sequence of decisions that jointly maximizes economic, ecological and social objectives, respects prescribed constraints and imprecision, and takes the ecological preservative management system from its existing status to the goal state. The cumulative impacts of objectives are formulated on the basis of attributes as a sum over all products of their membership functions and their relative importance (weights). A case study involving the ecological preservative management in Tatung community in Maoli, Taiwan, is used to demonstrate the application of the presented model. The problem in that community is presented in a form of a network, and the optimal policy over three year periods is determined using the iteration method for the solution of sequential decision processes of Bellman's type. The results show that the optimal sequence of decisions over the period mentioned above consists of the biological diversity oriented decision in the first and second year period, and considering environmental loading oriented decision in the third year period. In order to solve this problem, several decision support systems and models were developed.

Key-words: FAHP, Ecological preservation, Multi-stage objectives model, Optimal policy, Network.

1. Introduction

The development of city has been a major driver in the conversion of natural ecosystems and especially its management in mountainous community in Taiwan is becoming increasingly paramount for ecological conservation as world's natural environment promptly shrinks. Moreover this shifting process of rapid urbanization development and patterns from previous agricultural land uses to current urban one are not yet fully considered of the natural land condition as the base of cities due to ecological conservation has been neglected [3]. This advantage stems from the magnitude of intact ecosystems, a dynamic policy environment, and the increasing availability of biological and economic data needed to harmonize conservation with public works.

Regarding to carrying capacity, Mansfeld Jonas [6] used the carrying capacity value stretch model incorporated into nominal group technique methodology investigating a rural community's determinants of sociocultural carrying capacity perceptions in the wake of rural tourism development. Christopher and Polasky [2]

stressed that an important strategy to conserve biological diversity is to protect habitat through the establishment of a biological reserve system. Stirn et al. [11] revealed that a forest management problem consists of decisions on investment, silviculture and harvesting activities for an existing forestland over a long time horizon, while guaranteeing sustainability, maximizing the expected profit, referring to ecological objectives and the public's acceptance of decisions. Zamani et al. [15] stress raising community awareness could avoid slow-onset chronic hazards, such as extreme climate conditions and pollution, they used a multilevel theoretical framework based on the Conservation of Resources theory and the ecological analogy. Lee et al.[5] developed system provides great support to both the strategic and operational aspects of project management by integrating familiar network concepts with system dynamics to analyze the overall strategic and operational project performance.

Again, McAlpine, et al. [7] indicated, based on the evaluation of the two regional plans, regional biodiversity conservation goals may be

better achieved by implementing sustainable forest management practices across all ownerships and involving all stakeholders in the broader community. And eleven concepts were identified by Schulte, et al.[10], who expected to have some relevance to forest planning and including management. reserves. matrix management, coarse filter, mesofilter, fine filter, hotspots, diversity begets diversity, emulating natural disturbances, patchworks, networks, and gradients.

In strategic management research, Lee, et al., and Montreuil, et al., [5, 9] pointed out a strategic framework for designing and operating management networks, enables a collaboratively and plan. control manage year-to-year contingencies in a dynamic environment. Implementing strategic project management would let project managers not only learn the relationships of different communities and work sequences in their entirety, but also realize the impact of how one event or decision could affect overall project performance. Wu, et al. [12-14] presented sustainable community strategy evaluation by using multivariable analysis method in Miaoli countryside of Taiwan. These strategic project managements are operational project management and can help administer a detailed operational analysis with the guidance of the strategies set forward at the strategic project management stage.

The study will try to develop a model for a integrated network-based simulation new with a FAHP, and Multi-Stage approach Decision (MSDs) methodology, which encompasses both the strategic and the operational aspects of project management and can be updated in time by visitor opinions or experts to enhance managers' ability and applied in a mountainous Tatung community of Maoli, Taiwan. We aim to investigate this community with a hope to transfer this experience for other communities in this county. The goals of this research are: (1) to study the three levels hierarchical indicators considered as strategy by integrating FAHP with MSDs analysis and by investigating the Tatung community of Miaoli city; (2) to analyze benchmarks by questionnaire survey from residents that would promote an ecological conservation in Tatung community.

2. Site and method

2.1 Site

The Datung community is situated on the southwestern side of Datong Li (neighborhood) with an administrative area of 0.121 square kilometer and is the smallest community in Miaoli City. Fig. 1 shows the location of Datung community, where is near mountainous area and its development starts relatively early with a population of about 800 residents. Because local residents have alarmed tourism activity could be conflicted with local environment in coming several years. Consequently Tatung community organized themselves residents to fulfill preservation ecological in three-year а scheduling that was proposed based on questionnaire by using a multilevel theoretical framework. After surveying this community and its dwellers, we found two main problems when promoting to establish the community's ecological conservation planning: (1) it is not properly understanding environment carry capacity, conserving current natural landscape, and cultural-historical sites; and (2) there is no clear plan for maintaining environmental ecology for the community.

2.2 Method

Tatung community regarded current environmental planning as not carrying out evaluation for the completed programming in details because they only used rules by their experiences after we interviewed 12 the officers local residents of this community. and Eventually we chose environmental management, ecological conservation and environmental loading as the main phases for evaluation. The objective value for each phase can be expressed with Likert scale (n=5, 4, 3, 2, 1). The local residents or experts made the judgment decision of ecological conservation management in considering three-year planning in this community. Each judgment contained left score (α) and right score (β), that can be transformed into the suitable total score (μ). With the transformation of this mode [11], the result can provide a suitable path for the decision maker.

This research aims towards ecological preservation and will schedule on three years period, and the goal of the ecological preservation will avoid a conflicting with economical development. Each year, it is executed according to the repeated process of "comparing the relative importance in different variables and then making each decisions for three different stage (year)" during three years period. Table 1 shows the performance measurement for the three decisions in each process.

3.Multi-Stage Decision (MSDs) and Performance Value of the Goal 3.1 Multi-Stage decision planning

Dynamic programming is an operation technique of quantity that was developed by Richard Bellman [1] to analyze various and complicated multi-stage decision procedure for searching available strategy to solve sequential decision making problem. The solution for dynamic programming takes the complicated problem into several correlated sub-problems accordingly to simplify it, then analyze and consider them respectively in order to find out the optimal solution. During the process of multi-stage decision the most benefit decision for each stage will offer the basis for next correlated stage decision. MSDs using dynamic programming must have four characteristics (Hillier and Ieberman [4]) including: (1) the problem can be divided into several stages and given one decision for each stage; (2) each stage has several stage vectors, stage means various possible situations for each stage of the problem in the system; and (3) the decision vector for each stage can make the vector for certain state transformed into state vector of next stage, and the decision vector is composed by one group of decision variables, and the state variable of current stage also contains the effect to the system by the decision of last stage.

Overall, this optimal problem of community's ecological conservation programming in this research can satisfy the above characteristics, and is suitable to use MSD programming in solving the problem.

3.2 Determination of dimension of state variable

For evaluating the community dynamic ecological conservation hierarchical system, the

evaluation criteria or variable are created by collecting the opinions of experts and scholars and related documents [6, 8, 12-14]. Lastly we considered three dimensions including economic environmental development. ecology. and environmental carrying capacity perceptions. The dimension of "carrying capacity" thresholds of a given community might create antagonism among its members toward sustainable community etc. Using the case of tourism in a mountainous community of Maoli, this paper examines the perceptions and attitudes of local residents towards the development and operation conservation of ecological in Tatung community.

To decide the proper steps in the processing procedure is the main subject of this research although the procedure of decision is rather complicated. In this study the ecological conservation planning project in the operation period is set to three years. In each year, there are three items (decisions) were provided experts or local residents to make decision, which include economic development decision (d1), ecological conservation decision (d2) and environmental carrying capacity perceptions decision (d3). In the three-year decision process, decisions that are made would need to judge which stage can reach the greatest performance for total decision procedures.

4. Discussion

4.1 Decision of the criterion weight

The multiple criteria evaluation system and its hierarchical structure in this research are shown in Fig. 2. The AHP system can be divided into three-level. The first level is goal, the second level is analyzing dimensions, and the third level is object/variable. Thus the AHP system can be established in this study as: (1) economic development: solid waste control, waste water control, waste collection, and air pollution management; environmental ecology: (2)biologic preservation, biodiversity, and forest and moist reserve area; and (3) environmental carrying capacity perceptions: streams and water quality pollution, and average water penetration rate, and mountain slope development area. To get exactitude, we carried out one time pre-questionnaire before performing AHP

questionnaire that can ensure the effectiveness of evaluation objects, standards and variable. The interviewees can select the questionnaire, and then get the weight of each assessment criterion by means of pair wise comparative procedure. The calculation sums every weight distributed variable, experts or residents for each (responders) must fill the score for the contribution degree to reach final object for each property. The score for each case will be multiplied with variable weight to acquire total score of the decision (economic development, environmental ecology, and environmental carrying capacity loading).

The decision performance value (DPV) can be expressed as $DPV = \sum_{i=1}^{m} W_i r_{ik}$; where $w_i =$ weight, $r_{ik} =$ an index that provides the cumulative impacts of attributes t(k) on the favorability of objective k to DPV. The score for each decision performance can be expressed with the sum of evaluation standard grade for each item and the relative weighted product.

4.2 Integrating performance value of the goal and best path programming

Based on the direction of operation, it can be classified into forward and backward MSDs. For obtaining the optimal decision the formal calculation can start from the first stage to the last one; the latter from the last stage to the first stage. Both methods are to find out the best route. In our study we adopt the backward MSDs and the best route from last stage to first stage is made by recurrence relation [1]. In the community ecological conservation programming, economic development (d1), environmental ecology (d2), and environmental carrying capacity perceptions (d3) are the second level dimension. According to Stirn, et al. [11] the node (N i) and the contribution degree for the L(j) decisions can be calculated within several objects. By multiplying the objective weight, we can get the weighted performance value (table 1). Shown in Fig. 3, node A is the starting point of the programming first year as decision was chosen. In second year, the expert must make the decision at the starting nodes in either B1, B2 or B3, and third year at these nodes in either C1, C2 or C3. Totally there are three kinds of

decisions including environmental management, ecological conservation, and environmental loading that can be chosen in this network procedure. In Fig. 3 with these values in table 1, we can carry out dynamic programming in suitable procedure; the weighted performance value based on each route in the procedure can be solved by using dynamic programming and get the suitable path. Eventually the best path for ecological conservation programming in this study is: $A \rightarrow B2 \rightarrow C1 \rightarrow D$. The objective performance values are: object 1 (0.67), object 2(0.75) and object 3 (0.63). And the longest distance= DPV in the optimal ecological preservation management in Tatung community, Maoli, Taiwan=0.63+0.75+0.67=2.05 (shown in Fig.3). This parameter of DPV is similar to that of CUV proposed by Stirn et al. [11]. The process of community ecological conservation programming should be considered in environmental ecology (d2) in the first year, considered in environmental ecology (d2) in the second year, considered in environmental carrying capacity perceptions (d3) in the third year.

5. Conclusion

The ecological conservation programming in this community can be regarded as route network programming problem. From the starting point to node before ending point, every point is the decision point. Meanwhile, it must consider the achievement of goal and the effect of uncertainty. Our major findings and recommendations of this study may be summarized as follows:

1. The problem of community ecological conservation programming is to determine the procedure of operation. Therefore it has the characteristics of route network. Moreover, the problem of community ecological conservation programming not only has to the problem of ecological concern conservation, but also stresses environmental carrying capacity loading and time sequencing in fulfillment in three-year schedule. Therefore it exists the nature of multiple-goal as well as fulfill-year planning. Due to the uncertainty of making decision, this research proposed fuzzy multiple-goal decision model to carry out the programming of suitable ecological conservation in this community.

- Usually in the multiple-goal network 2. programming, the weight of object will be measured by the whole network. Nonetheless before reaching the end point, different stage (scenarios) will face each node to make a decision. Thus this research takes each node as a decision point and each node has different weighted value in current stage in optimal order to get the decision performance value (DPV).
- 3. Based on the analysis of this research, ecological conservation programming in the community, the first priority benchmark in each year included in the first year residents concerning biodiversity in ecological conservation, in the second year in the ecological conservation, and the water quality pollution of stream in environmental carrying capacity in the third year.
- 4. paper, first propose In this we а network-oriented organizational strategy preservation based on ecological bv dynamically organizes its management operations through the three-stage (year) decision integrating AHP in a distributed network of ecological preservation goal. And we present a collaborative relationship strategy as a contractual approach to implement operational networks. Also we introduce an operational strategy, showing how this networked collaborative approach can be used to manage year-to-year decisions and managements in a close-to-reality manner.
- 5. Overall, the fulfillment of "ecological preservation" in mountainous Tatung community represents planning а development and management approach for attaining an integrated and balanced tourism sector that takes consideration in ecological environmental interests, socio-cultural and not concerning economic development needs. In this strategic framework, rural areas will seek three main socio-cultural prerequisites, as a precondition for successfully managing in rural sustainable community objection. The first will stress environmental ecology instead of economical development concerning

tourism; the second is managing local biology diversity; the third is a broad examination of the socio-cultural 'carrying capacity' which includes (1) streams and water quality pollution; (2) average water penetration rate in land; and (3) mountain slope development area ratio, in this community prior to any economic development such as tourism.

Acknowledgments

The authors thank the National Science Council (NSC 96-2415-H-239-002-SS3), Taiwan, for financially supporting this research.

Reference:

- [1]Bellman, R., 1957, *Dynamic Programming*, Princeton, NJ: Princeton University Press.
- [2]Christopher, C., and Polasky, S., Dynamic reserve site selection, *Resource and Energy Economics* 26, 2004, pp.157–174.
- [3]Hara, Y., Takeuchi, k., Okubo, S., Urbanization Linked with Past Agricultural Land Use Patterns in the Urban Fringe of a Deltaic Asian Mega-City: a Case Study in Bangkok, *Landscape and Urban Planning* 73, 2005, pp.16–28.
- [4]Hillier, FS. and Ieberman, JL., 1990, *Introduction to Operations Research* (3rd. ed.), Holdenday Inc, San Francisco.
- [5]Lee, SH., Feniosky Pena-Mora, F., Park, M., Dynamic Planning and Control Methodology for Strategic and Operational Construction Project Management, 2006, *Automation in Construction* 15, pp. 84 – 97.
- [6]Mansfeld, Y. and Jonas, A. Evaluating the Socio-Cultural Carrying Capacity of Rural Tourism Communities: A 'Value Stretch' Approach, *Tijdschrift voor Economische en Sociale Geografie*, 97(5), 2006, pp. 583–601.
- [7]McAlpine, CA, Spiesb, TA, Norman, P., Peterson, A., Conserving Forest Biodiversity Across Multiple Land Ownerships: Lessons from the Northwest Forest Plan and the Southeast Queensland Regional Forests Agreement (Australia), 2007, *Biological Conservation* 134, pp. 580-592.
- [8] Ministry of Interior Construction Research Institute, *Evaluation Manual for Green Buildings in Taiwan*, 2007 New Edition.

- [9]Montreuil, B., Frayret, JM., D'Amours, S., A Strategic Framework for Networked Manufacturing, *Computers in Industry* 42, 2000, pp.299–317.
- [10]Schulte, LA., Mitchell, RJ., Hunter Jr., ML., Franklin, JF., McIntyre, RK., and Palik, J., Evaluating the conceptual tools for forest biodiversity conservation and their implementation in the U.S. *Forest Ecology and Management* 232, 2006, pp. 1–11
- [11]Stirn, LZ, Integrating the Fuzzy Analytic Hierarchy Process with Dynamic Programming Approach for Determining the Optimal Forest Management Decisions, *Ecological Modelling*194 (1-3), 2006, pp.296-305.
- [12]Wu, KY., Wey, WM., and Lin, WZ., 2006. Sustainable Community Strategy Evaluation Using Multivariable Analysis Method in the Case of Miaoli Countryside of Taiwan. WSEAS Transactions on Environment and Development 5(2), 644~651.
- [13]Wu, KY., Wey, WM., and Lin, WZ., 2006. Using Fuzzy Analytic Hierarchy Process Evaluates Sustainable Community Management in Miaoli city of Taiwan, WSEAS Transactions on Environment and Development 6(2), 792~799.

- [14]Wu, KY., Wey, WM., Lin, WZ., and Huang, CH., 2007. Disaster Prevention Strategy of Mountainous Community Using Fuzzy Analytic Hierarchy Process in Miaoli, Taiwan, WSEAS Transactions on Biology and Biomedicine 7(3), 538-545.
- [15]Zamani, GhH., Marjan, J., Zarafshani, GDK., Coping with Drought: Towards a Multilevel Understanding Based on Conservation of Resources Theory, 2006, *Hum Ecol* 34, pp.677–692.

Fig. 1 Location of Tatung community in Miaoli city of Taiwan.

Fig. 2. Level of toward an ecological preservation planning in Tatung community study using multi-stage decision and FAHB method in the Miaoli city of Taiwan.

**		D · ·	<u> </u>	1 ()	0	0	···· p ···· ···	() D	<u>, , , , , , , , , , , , , , , , , , , </u>	xxx 1 1 1
Year	Node	Decision	Connected	$d_1(x)$	u	β	$\mu(x)/d_1$	$\omega(x) = \mathbf{P}$	ertormance	Weighted
			Spot					Value		Performance
										value
	А	d_1	$A-B_1$	2.83	2.33	3.67	0.38	0.17	0.76	0.61
1 st y	Α	d_2	$A-B_2$	2.50	1.83	3.33	0.44	0.49	0.74	0.67^{a1}
	Α	d_3	$A-B_3$	3.67	2.50	4.50	0.58	0.30	0.52	0.66
	B ₁	d ₁	B_1 - C_1	2.83	2.00	3.50	0.56	0.14	0.55	0.58
	\mathbf{B}_1	d_2	B_1 - C_2	2.83	2.50	3.67	0.29	0.38	0.79	0.63
	B_1	d_3	B_1-C_3	3.17	2.17	3.83	0.60	0.17	0.61	0.59
	B_2	d_1	B_2-C_1	3.50	2.17	4.50	0.57	0.31	0.50	0.54
2 nd y	B_2	d_2	B_2 - C_2	3.33	2.17	4.17	0.58	0.49	0.56	0.57
	B_2	d_3	B_2-C_3	3.17	2.17	4.17	0.50	0.28	0.75	0.75^{a2}
	B_3	d_1	B_3-C_1	3.00	2.00	3.67	0.60	0.36	0.58	0.55
	B_3	d_2	B_3-C_2	3.50	2.33	4.00	0.70	0.49	0.71	0.66
	B_3	d_3	B_3-C_3	4.17	2.67	4.83	0.60	0.66	0.56	0.56
	C_1	d ₁	C ₁ -D	3.00	2.33	3.83	0.44	0.17	0.57	0.60
$3^{rd} y$	C_2	d_2	C ₂ -D	3.50	2.50	4.33	0.55	0.49	0.67	0.61
	C ₃	d ₃	C ₃ -D	3.33	2.50	4.50	0.42	0.30	0.65	0.63^{a3}

Table1 Weighted object performance value for each program path in Tatung community, Maoli, Taiwan

Note: the longest distance= the optimal ecological preservation management in Tatung community, Maoli, Taiwan= $a^3+a^2+a^1=0.63+0.75+0.67=2.05$ (shown in Fig.3)

Fig. 3. A network to demonstrate the multi-objective dynamic procedure in Tatung Community study. The best path for ecological conservation programming is $A \rightarrow B2 \rightarrow C1 \rightarrow D$ in this community. The objective performance values are: object 1 (0.67), object 2(0.75) and object 3 (0.63). Thus the process of community ecological conservation programming should be considered in environmental ecology in first year, then considered in environmental ecology in second year, and considered in environmental carrying capacity perceptions in third year. Dot line indicating the best route (strategy) programming is the longest distance, i.e. the biggest value in sum of DPV is 2.05 in this research.