
Wireless Communication Techniques for Home Automation

Sensors

CIPRIAN SEICULESCU, IOAN LIE, AUREL GONTEAN

Applied Electronic Department

„Politehnica“ University of Timisoara

Bd. Vasile Parvan, no. 2, Timisoara, 300223

ROMANIA

ioan.lie@etc.upt.ro

Abstract: -. When designing low power sensor with radio capabilities the choice of the encoding for the radio

signal can have great impact on performance and implementation requirements. The paper presents different

encodings with their advantages and disadvantages, looking at both performance and implementation

requirements. Finally the paper presents a proposed PWM encoding and the way that it was implemented and

shows that the implementation advantages over other more traditional encoding outweigh the loss in

performance.

Key-Words: - PWM, amplitude modulation, Low power sensors networks, FPGA Prototyping

1 Introduction
In the recent years home automation is becoming a

very popular field. However for home automation

one important demand is to reduce the number of

wires needed to connect all the sensors as it is very

inconvenient to install a large number of wires to

create a sensor network. For example if smart water

meters and smart heat meters are installed the state

of the meters can be collected by the network and

transmitted by some standard network (Ethernet) to

the company that sends the bills. The paper

describes how we chose and implemented the

wireless communication for this sort sensors and

data collectors while at the same time to meet the

other constraints imposed for such sensors.

Water meters and heat meters for home automation

have to be cheep low power devices. Most sensors

are built around a microcontroller that has to

implement all the logic of the sensor. Such sensors

usually have to work for at least ten years on battery

and therefore have to be low power and there is little

extra hardware that can be added apart from the

controller. In this case all the communication

protocol has to be implemented in software with

limited hardware support only what is offered as

peripherals of the microcontroller.

Under these constraints we had to optimize the data

encoding for the communication protocol in order to

be easier to implement in software and still to keep a

performance that is close to a more traditional

encoding but which would require some dedicated

hardware components.

2. Coding solutions
The simples coding and physical layer

communication protocol is the one used at the

UART transceivers. [1] This is a simple encoding

where the bits are encoded by the voltage level and

the protocol permits the synchronization of the

receiver at the beginning of each byte. Since the

transmitter is implemented in software and

sometimes the receiver as well timing is critical and

it is very complicated to keep both the transmitter

and the receiver synchronized for very long. The

UART protocol has the advantage that the

transmitter and the receiver have to be synchronized

only for the duration of one byte. On the other hand

our simple radio transmitter was set for ON/OFF

amplitude modulation. This means that if data that

contained a lot of zeros has to be transmitted for the

duration of those zeros there would be no carrier

wave with this encoding. The lack of carrier wave

from the transmitter leads the receiver to drift from

the functioning point and start amplifying the noise

which compromises the transmission. One solution

was to divide the data into nibbles and force some

bits to ‘1’ in order to have the carrier wave active for

sufficient time. However this would have doubled

the time necessary to transmit the data and therefore

violate our low power restrictions.

 In order to avoid the problem of the UART

encoding we turned to an encoding tat ensured that

we would have a carrier wave for an average of 50%

of the transmission time regardless of the data we

transmit. An encoding that complies with these

specifications is the Manchester encoding. [2, 3]

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 151

From the electrical point of view the Manchester

encoding is ideal, however we had implementation

problems. One major problem that we faced with

our software implemented versions was

synchronization. Synchronizing the receiver with the

transmitter was only possible without any extra

overhead only at the beginning of the data package

where code violations could be inserted. After the

initial synchronization both the transmitter and the

receiver would have to keep a stable frequency for

the duration of the whole package. Implementing

these timing requirements in software is very

difficult and the slightest deviation would result in

errors at reception even if the signal is not affected

by noise and the whole package would need to be

retransmitted resulting in a waste of energy.

A robust encoding for software implementation

should allow the receiver to synchronize with the

transmitter more often than just at the beginning of

the data package. At the same time the encoding

should allow the carrier wave to be on enough time,

so that the receiver would not be affected by noise,

regardless of the transmitted data. We found that by

using a “Pulse Width Modulation” (PWM) to

encode the data at the physical layer we could

satisfy both requirements. We defined the encoding

as follows: a 25% pulse for logical ‘0’ and a 75%

pulse for logical ‘1’. This way in the worse case

when a lot of ‘0’ are transmitted the carrier wave is

on for at least 25% of the time. The other main

advantage is that each bit starts with a rising edge

which can be used for synchronization at the

receiver as shown in Figure x.

Figure 1 PWM signals diagram

As shown in Figure x each bit of the transmitted

data starts with a rising edge and has a predefined

constant period known by the receiver. The only

thing that changes is the pulse width. The receiver

can synchronize on the rising edge and set its timing

to sample at 50% of the period. If the transmitted bit

is ‘0’, than the receiver sampling at half the period,

will see a ‘0’. The case where ‘1’ is transmitted is

similar and the sampled values are actually the bit

values and no further processing is necessary.

This encoding method proved to be robust because

with the synchronization on each bit the timing

errors introduced by software implementations of

the transmitter or the receiver are not cumulated to

the whole package, therefore requiring precise

timing. From over experiments that we will present

in the chapter 4, we will show that the PWM

encoding method is comparable to the Manchester

encoding methods and that advantages offered for

implementation are greater than the loss in

performance as compared to Manchester encoding.

3 Implementations.
3.1 Data package description
There are three problems that we tried to address

when we defined the structure of our data package.

One problem was to allow time for the receiver to

get ready to receive data. We do this by transmitting

8 bytes with the value 0xAA as a preamble. This

way the receiver sees the carrier wave for 50% of

the time on average and it should bring the receiver

in the functioning point. The second problem was to

find a way to delimit the start of the package. For

this we chose to transmit a field of 16 bits after the

preamble which we called the key. We chose to

transmit the value 0xCCCC as the key. The receiver

has to wait for the key combination before starting

to save the received data and has to ignore any key

combinations that appear until the end of the

package. The third problem that needed to be solved

was to ensure data integrity. We did this by using

CRC to detect any errors in the transmission. We

used a 16 bit CRC with the standard CCITT

polynomial expression.

Except for the data that we needed to add to comply

with the requirements of the physical medium we

tried to construct the data package to be general in

order to use it for any application with sensor

networks. Therefore the data package contains a

fixed length header that contains the destination

address on 8 bits, the source address on 8 bits, an 8

bit field to identify the connection, the length of the

data on 8 bits and the CRC code of the header on 16

bits. After the header the data is send and it can have

variable size in between 1 and 255 bytes followed

by the CRC code of the data field.

3.2 Software implementation
We have implemented a software version of the

transmitter using a MSP430F417 microcontroller

from Texas Instruments. This is a low power

microcontroller which is used for many metering

applications since it also has an integrated LCD

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 152

controller. The only hardware support that we used

was one of the timers and a compare channel in

order to generate the timing from the transmitter.

Since metering applications have to be low power

solutions the microcontroller was set to work at 1

MHz in order to save energy. In order for the

transmitter to work at this clock speed, we could not

use the timer interrupt to construct the transmitter

code. Instead the assembly written code that

emulates the transmitter actively waits on the

interrupt flag of the compare channel that was used

to generate the timing. The disadvantage of this

solution is that the microcontroller has to be active

all the time until the whole data package is

transmitted, but the advantage is that we have more

precise timing without having a dedicated hardware

controller as a transmitter.

In a similar fashion we implemented a software

version of the receiver which we tested on a

MSP430F449 microcontroller. We chose this

controller because it has a standard UART hardware

interface which we used to connect to a PC in order

to collect data. However this is similar with the

previous controller which is more popular for simple

meters. The drawback of a purely software

implementation of the receiver is that the controller

is always busy waiting to receive the key which

marks the begging of a data package. The problem is

that without any carrier wave present the receiver

amplifies the noise to logic levels and therefore if

the input pin would be set to give an interrupt on

change, the interrupt would constantly be triggered.

For this reason a purely software receiver

implementation has limited practical application.

3.3 Hardware implementation
To test a hardware implementation, we used an

FPGA platform based on Cyclone II device from

Altera. We also used the Nios II processor that

Altera offers for their FPGAs to build out system.

The idea behind the hardware implementation was

to create a data collection device for intelligent

meters, which could collect the data from the

sensors over radio and relay to a central database

over Ethernet. In order to offload the processor as

much as possible we implemented the physical level

protocol and most of the data link level protocol in

hardware. A simplified diagram of our test system is

presented in Figure 2.

In order to use the TCP/IP stack we programmed our

application using MicroC/OS-II real time kernel. In

this case it was useful to move as much of the radio

transceiver protocol in hardware and to use some

FIFO buffers in order to have more relaxed real time

constraints

Figure 2 The block diagram of test system

The whole design including the processor and other

necessary peripherals was fitted in fewer than 5000

logic cells. For a more precise report see Figure 3.

Figure 3 Hardware implementation report

However in order to make low cost sensors with

receiver capabilities a hybrid solution can be used. It

is enough to implement in hardware the “Receiver

logic” and to implement the protocol in software.

This way the controller is interrupted only when the

key is detected or when a byte is received. The

“Receiver logic” block only takes 58 logic cells.

Such a receiver together with some additional logic

for communicating with a microcontroller could be

fitted in a low power CPLD like the ones from the

Cool Runner II series from Xilinx with 128

elements.

3.4 RF modules
The radio transmitter and receiver modules were

build around two dedicated circuits: the TH72032

ASK transmitter and the TH71111 FSK/FM/ASK

single-conversion superheterodyne receiver,

designed by Melexis for applications in the

European 868 MHz industrial-scientific-medical

(ISM) band.

The transmitter's carrier frequency fc is determined

by the frequency of the reference crystal fref. The

integrated PLL synthesizer ensures that carrier

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 153

frequencies, ranging from 850 MHz to 930 MHz,

can be achieved. This is done by using a crystal with

a reference frequency according to: fref = fc/N, where

N = 32 is the PLL feedback divider ratio. The PLL

transmitter can be ASK-modulated by applying a

data stream directly at a dedicated pin ASKDTA.

This turns the internal current sources of the power

amplifier on and off and therefore leads to an ASK

signal at the output. The mode control logic allows

two different modes of operation depending of the

state of the mode control pin ENTX.

The TH71111 FSK/FM/ASK receiver IC

consists of the following building blocks: PLL

synthesizer for generation of the local oscillator

signal LO; Low-noise amplifier for high-sensitivity

RF signal reception; First mixer for down-

conversion of the RF signal to the IF; IF

preamplifier which is a mixer cell that operates as an

amplifier; IF amplifier to amplify and limit the IF

signal and for RSSI generation; Phase coincidence

demodulator with third mixer to demodulate the IF

signal; Operational amplifier for data slicing,

filtering and ASK detection; Bias circuitry for

bandgap biasing and circuit shutdown.

With the TH71111 receiver chip, various circuit

configurations can be arranged in order to meet a

number of different customer requirements. In ASK

configuration the RSSI signal is fed to an ASK

detector, which is constituted by the operational

amplifier.

4 Experimental setup and results
There were two experiments. One where we

tried to see the difference between the Manchester

encoding and our PWM encoding. In the other

experiment we tried to find out the effective range of

the radio connection, using the PWM encoding on

our current RF radio hardware.

In our experiments we used a MSP430F417

based sensor with a software emulated transmitter

which was adapted to use both our PWM encoding

and the Manchester encoding for the same data

structure and the hardware implementation

described above as the receiver. In the first

experiment we were interested in the time that it

takes the receiver to get to the functioning point

once the transmission is started. For this we looked

at the output signal of the RF radio receiver on the

digital output that is connecter to the digital receiver

implemented on the FPGA.

The results of the experiment are visible in the

Figures 4 and 5 which are captured of the

oscilloscope. The Manchester encoding seems to be

somewhat better since it presents in average the

carrier wave 50% of the time every bit while our

PWM encoding achieves an average of 50% every

two bits for the data we transmit in the preamble.

The receiver settles after 7.37 ms in the case when

the Manchester encoding is used and at 10.3 ms in

the case where the PWM encoding is used. We

consider that the receiver is settled once the bit

lengths correspond to their desired value and the

timing on both the high voltage level and the low

voltage level is equal. In the beginning the receiver

seems to stay on the high level longer than on the

low level. From the experiments we could see that

around 3 bytes for the preamble is enough for the

Manchester encoding and 4 bytes are necessary for

the PWM encoding with 400 µs for the bit period.

The difference in behavior is not significantly worse

in the case where we use our encoding and anyway

we use 8 byte for the preamble to make sure that the

receiver is working correctly when the real data

arrives.

Figure 4 Machester Encoding: received signal (left) – settling time measurement (right)

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 154

Figure 5 PWM Encoding: received signal (left) – settling time measurement (right)

In the second experiment we set the transmitter to

use the PWM encoding and to regularly send a data

package containing 6 bytes of effective data plus the

extra data required by our communication protocol.

We started out with the transmitter close to the

receiver and incremented the distance between the

transmitter and the receiver by one meter once a data

package was sent. On the receiver side we checked

to see if the receiver got the data with no errors.

Once the receiver started presenting systematic

errors we stopped moving the transmitter and

measured the distance between the two. Our

experiment was done inside the building and we

came up with a range of around 25 meters in this

configuration using the Melexis RF modules and the

PWM encoding.

5 Conclusion
The paper proposes the PWM data encoding as an

alternative encoding for wireless communication to

be used in low cost and low power sensors. The

main advantage of this encoding is the ability to

implement the transmitter and the receiver without

much hardware support and of being less sensitive

to timing errors. The paper also compares this type

of encoding to a more traditional encoding like

Manchester and shows from the experimental results

that the loss in performance is not significant.

Therefore we considered that the advantages of the

PWM encoding are greater than the loss in

performance as compared to the Manchester

encoding and for our sensor network application we

decided to use the PWM encoding for the radio

communication.

References:

[1] nAN400-07, “nRF
TM
 Radio protocol

guidelines”, Nordic VLSI ASA application note,

December 2002.

[2] R. Forster, 'Made in Manchester', IEE Review,

March 2000, p. 42

[3] W. Stallings, Data and Computer

Communications (7th Ed.). Prentice Hall, pp.

137-138. ISBN 0-13-100681-9, 2004.

[4] D. Steed, H. Nielsen, “Frequency hopping data

radio”, U. S. Patent 7103086, September 2006.

[5] AN070, “Verilog implementation of a

Manchester encoder/decoder in Philips CPLDs”.

Philips Semiconductors application note, 1997.

[6] XAPP339, “Manchester Encoder-Decoder for

Xilinx CPLDs”, Xilinx application note,

October, 2002

[7] S. K. An; S. I. Park; S. B. Jun; C. J. Lee; K. M.

Byun; J. H. Sung, “Design for a Simplified

Cochlear Implant System”, IEEE Transactions

on Biomedical Engineering, Volume 54, Issue 6,

June 2007 Page(s): 973 – 982.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 155

	Text4:

