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Abstract: -. When designing low power sensor with radio capabilities the choice of the encoding for the radio 

signal can have great impact on performance and implementation requirements. The paper presents different 

encodings with their advantages and disadvantages, looking at both performance and implementation 

requirements. Finally the paper presents a proposed PWM encoding and the way that it was implemented and 

shows that the implementation advantages over other more traditional encoding outweigh the loss in 

performance.  
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1 Introduction 
In the recent years home automation is becoming a 

very popular field. However for home automation 

one important demand is to reduce the number of 

wires needed to connect all the sensors as it is very 

inconvenient to install a large number of wires to 

create a sensor network. For example if smart water 

meters and smart heat meters are installed the state 

of the meters can be collected by the network and 

transmitted by some standard network (Ethernet) to 

the company that sends the bills. The paper 

describes how we chose and implemented the 

wireless communication for this sort sensors and 

data collectors while at the same time to meet the 

other constraints imposed for such sensors.  

Water meters and heat meters for home automation 

have to be cheep low power devices. Most sensors 

are built around a microcontroller that has to 

implement all the logic of the sensor. Such sensors 

usually have to work for at least ten years on battery 

and therefore have to be low power and there is little 

extra hardware that can be added apart from the 

controller. In this case all the communication 

protocol has to be implemented in software with 

limited hardware support only what is offered as 

peripherals of the microcontroller. 

Under these constraints we had to optimize the data 

encoding for the communication protocol in order to 

be easier to implement in software and still to keep a 

performance that is close to a more traditional 

encoding but which would require some dedicated 

hardware components. 

 

2. Coding solutions 
The simples coding and physical layer 

communication protocol is the one used at the 

UART transceivers. [1] This is a simple encoding 

where the bits are encoded by the voltage level and 

the protocol permits the synchronization of the 

receiver at the beginning of each byte. Since the 

transmitter is implemented in software and 

sometimes the receiver as well timing is critical and 

it is very complicated to keep both the transmitter 

and the receiver synchronized for very long. The 

UART protocol has the advantage that the 

transmitter and the receiver have to be synchronized 

only for the duration of one byte. On the other hand 

our simple radio transmitter was set for ON/OFF 

amplitude modulation. This means that if data that 

contained a lot of zeros has to be transmitted for the 

duration of those zeros there would be no carrier 

wave with this encoding. The lack of carrier wave 

from the transmitter leads the receiver to drift from 

the functioning point and start amplifying the noise 

which compromises the transmission. One solution 

was to divide the data into nibbles and force some 

bits to ‘1’ in order to have the carrier wave active for 

sufficient time. However this would have doubled 

the time necessary to transmit the data and therefore 

violate our low power restrictions. 

 In order to avoid the problem of the UART 

encoding we turned to an encoding tat ensured that 

we would have a carrier wave for an average of 50% 

of the transmission time regardless of the data we 

transmit. An encoding that complies with these 

specifications is the Manchester encoding. [2, 3] 
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From the electrical point of view the Manchester 

encoding is ideal, however we had implementation 

problems. One major problem that we faced with 

our software implemented versions was 

synchronization. Synchronizing the receiver with the 

transmitter was only possible without any extra 

overhead only at the beginning of the data package 

where code violations could be inserted. After the 

initial synchronization both the transmitter and the 

receiver would have to keep a stable frequency for 

the duration of the whole package. Implementing 

these timing requirements in software is very 

difficult and the slightest deviation would result in 

errors at reception even if the signal is not affected 

by noise and the whole package would need to be 

retransmitted resulting in a waste of energy.  

A robust encoding for software implementation 

should allow the receiver to synchronize with the 

transmitter more often than just at the beginning of 

the data package. At the same time the encoding 

should allow the carrier wave to be on enough time, 

so that the receiver would not be affected by noise, 

regardless of the transmitted data. We found that by 

using a “Pulse Width Modulation” (PWM) to 

encode the data at the physical layer we could 

satisfy both requirements. We defined the encoding 

as follows: a 25% pulse for logical ‘0’ and a 75% 

pulse for logical ‘1’. This way in the worse case 

when a lot of ‘0’ are transmitted the carrier wave is 

on for at least 25% of the time. The other main 

advantage is that each bit starts with a rising edge 

which can be used for synchronization at the 

receiver as shown in Figure x. 

 

Figure 1 PWM signals diagram 

As shown in Figure x each bit of the transmitted 

data starts with a rising edge and has a predefined 

constant period known by the receiver. The only 

thing that changes is the pulse width. The receiver 

can synchronize on the rising edge and set its timing 

to sample at 50% of the period. If the transmitted bit 

is ‘0’, than the receiver sampling at half the period, 

will see a ‘0’. The case where ‘1’ is transmitted is 

similar and the sampled values are actually the bit 

values and no further processing is necessary. 

 

This encoding method proved to be robust because 

with the synchronization on each bit the timing 

errors introduced by software implementations of 

the transmitter or the receiver are not cumulated to 

the whole package, therefore requiring precise 

timing. From over experiments that we will present 

in the chapter 4, we will show that the PWM 

encoding method is comparable to the Manchester 

encoding methods and that advantages offered for 

implementation are greater than the loss in 

performance as compared to Manchester encoding. 

 

 

3   Implementations. 
3.1   Data package description 
There are three problems that we tried to address 

when we defined the structure of our data package. 

One problem was to allow time for the receiver to 

get ready to receive data. We do this by transmitting 

8 bytes with the value 0xAA as a preamble. This 

way the receiver sees the carrier wave for 50% of 

the time on average and it should bring the receiver 

in the functioning point. The second problem was to 

find a way to delimit the start of the package. For 

this we chose to transmit a field of 16 bits after the 

preamble which we called the key. We chose to 

transmit the value 0xCCCC as the key. The receiver 

has to wait for the key combination before starting 

to save the received data and has to ignore any key 

combinations that appear until the end of the 

package. The third problem that needed to be solved 

was to ensure data integrity. We did this by using 

CRC to detect any errors in the transmission. We 

used a 16 bit CRC with the standard CCITT 

polynomial expression.  

Except for the data that we needed to add to comply 

with the requirements of the physical medium we 

tried to construct the data package to be general in 

order to use it for any application with sensor 

networks. Therefore the data package contains a 

fixed length header that contains the destination 

address on 8 bits, the source address on 8 bits, an 8 

bit field to identify the connection, the length of the 

data on 8 bits and the CRC code of the header on 16 

bits. After the header the data is send and it can have 

variable size in between 1 and 255 bytes followed 

by the CRC code of the data field. 

 

3.2 Software implementation 
We have implemented a software version of the 

transmitter using a MSP430F417 microcontroller 

from Texas Instruments. This is a low power 

microcontroller which is used for many metering 

applications since it also has an integrated LCD 
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controller. The only hardware support that we used 

was one of the timers and a compare channel in 

order to generate the timing from the transmitter. 

Since metering applications have to be low power 

solutions the microcontroller was set to work at 1 

MHz in order to save energy. In order for the 

transmitter to work at this clock speed, we could not 

use the timer interrupt to construct the transmitter 

code. Instead the assembly written code that 

emulates the transmitter actively waits on the 

interrupt flag of the compare channel that was used 

to generate the timing. The disadvantage of this 

solution is that the microcontroller has to be active 

all the time until the whole data package is 

transmitted, but the advantage is that we have more 

precise timing without having a dedicated hardware 

controller as a transmitter. 

In a similar fashion we implemented a software 

version of the receiver which we tested on a 

MSP430F449 microcontroller. We chose this 

controller because it has a standard UART hardware 

interface which we used to connect to a PC in order 

to collect data. However this is similar with the 

previous controller which is more popular for simple 

meters. The drawback of a purely software 

implementation of the receiver is that the controller 

is always busy waiting to receive the key which 

marks the begging of a data package. The problem is 

that without any carrier wave present the receiver 

amplifies the noise to logic levels and therefore if 

the input pin would be set to give an interrupt on 

change, the interrupt would constantly be triggered. 

For this reason a purely software receiver 

implementation has limited practical application. 

 

3.3 Hardware implementation 
To test a hardware implementation, we used an 

FPGA platform based on Cyclone II device from 

Altera. We also used the Nios II processor that 

Altera offers for their FPGAs to build out system. 

The idea behind the hardware implementation was 

to create a data collection device for intelligent 

meters, which could collect the data from the 

sensors over radio and relay to a central database 

over Ethernet. In order to offload the processor as 

much as possible we implemented the physical level 

protocol and most of the data link level protocol in 

hardware. A simplified diagram of our test system is 

presented in Figure 2. 

In order to use the TCP/IP stack we programmed our 

application using MicroC/OS-II real time kernel. In 

this case it was useful to move as much of the radio 

transceiver protocol in hardware and to use some 

FIFO buffers in order to have more relaxed real time 

constraints 

 

Figure 2 The block diagram of test system 

The whole design including the processor and other 

necessary peripherals was fitted in fewer than 5000 

logic cells. For a more precise report see Figure 3.  

 

Figure 3 Hardware implementation report 

However in order to make low cost sensors with 

receiver capabilities a hybrid solution can be used. It 

is enough to implement in hardware the “Receiver 

logic” and to implement the protocol in software. 

This way the controller is interrupted only when the 

key is detected or when a byte is received. The 

“Receiver logic” block only takes 58 logic cells. 

Such a receiver together with some additional logic 

for communicating with a microcontroller could be 

fitted in a low power CPLD like the ones from the 

Cool Runner II series from Xilinx with 128 

elements.  

 

3.4 RF modules 
The radio transmitter and receiver modules were 

build around two dedicated circuits: the TH72032 

ASK transmitter and the TH71111 FSK/FM/ASK 

single-conversion superheterodyne receiver, 

designed by Melexis for applications in the 

European 868 MHz industrial-scientific-medical 

(ISM) band. 

The transmitter's carrier frequency fc is determined 

by the frequency of the reference crystal fref. The 

integrated PLL synthesizer ensures that carrier 
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frequencies, ranging from 850 MHz to 930 MHz, 

can be achieved. This is done by using a crystal with 

a reference frequency according to: fref = fc/N, where 

N = 32 is the PLL feedback divider ratio. The PLL 

transmitter can be ASK-modulated by applying a 

data stream directly at a dedicated pin ASKDTA. 

This turns the internal current sources of the power 

amplifier on and off and therefore leads to an ASK 

signal at the output. The mode control logic allows 

two different modes of operation depending of the 

state of the mode control pin ENTX. 

The TH71111 FSK/FM/ASK receiver IC 

consists of the following building blocks: PLL 

synthesizer for generation of the local oscillator 

signal LO; Low-noise amplifier for high-sensitivity 

RF signal reception; First mixer for down-

conversion of the RF signal to the IF; IF 

preamplifier which is a mixer cell that operates as an 

amplifier; IF amplifier to amplify and limit the IF 

signal and for RSSI generation; Phase coincidence 

demodulator with third mixer to demodulate the IF 

signal; Operational amplifier for data slicing, 

filtering and ASK detection; Bias circuitry for 

bandgap biasing and circuit shutdown. 

With the TH71111 receiver chip, various circuit 

configurations can be arranged in order to meet a 

number of different customer requirements. In ASK 

configuration the RSSI signal is fed to an ASK 

detector, which is constituted by the operational 

amplifier. 

 

4 Experimental setup and results 
There were two experiments. One where we 

tried to see the difference between the Manchester 

encoding and our PWM encoding. In the other 

experiment we tried to find out the effective range of 

the radio connection, using the PWM encoding on 

our current RF radio hardware. 

In our experiments we used a MSP430F417 

based sensor with a software emulated transmitter 

which was adapted to use both our PWM encoding 

and the Manchester encoding for the same data 

structure and the hardware implementation 

described above as the receiver. In the first 

experiment we were interested in the time that it 

takes the receiver to get to the functioning point 

once the transmission is started. For this we looked 

at the output signal of the RF radio receiver on the 

digital output that is connecter to the digital receiver 

implemented on the FPGA. 

The results of the experiment are visible in the 

Figures 4 and 5 which are captured of the 

oscilloscope. The Manchester encoding seems to be 

somewhat better since it presents in average the 

carrier wave 50% of the time every bit while our 

PWM encoding achieves an average of 50% every 

two bits for the data we transmit in the preamble. 

The receiver settles after 7.37 ms in the case when 

the Manchester encoding is used and at 10.3 ms in 

the case where the PWM encoding is used. We 

consider that the receiver is settled once the bit 

lengths correspond to their desired value and the 

timing on both the high voltage level and the low 

voltage level is equal. In the beginning the receiver 

seems to stay on the high level longer than on the 

low level. From the experiments we could see that 

around 3 bytes for the preamble is enough for the 

Manchester encoding and 4 bytes are necessary for 

the PWM encoding with 400 µs for the bit period. 

The difference in behavior is not significantly worse 

in the case where we use our encoding and anyway 

we use 8 byte for the preamble to make sure that the 

receiver is working correctly when the real data 

arrives.  

 

  
Figure 4 Machester Encoding: received signal (left) – settling time measurement (right) 
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Figure 5 PWM  Encoding: received signal (left) – settling time measurement (right) 

 

In the second experiment we set the transmitter to 

use the PWM encoding and to regularly send a data 

package containing 6 bytes of effective data plus the 

extra data required by our communication protocol. 

We started out with the transmitter close to the 

receiver and incremented the distance between the 

transmitter and the receiver by one meter once a data 

package was sent. On the receiver side we checked 

to see if the receiver got the data with no errors. 

Once the receiver started presenting systematic 

errors we stopped moving the transmitter and 

measured the distance between the two. Our 

experiment was done inside the building and we 

came up with a range of around 25 meters in this 

configuration using the Melexis RF modules and the 

PWM encoding. 

 

5   Conclusion 
The paper proposes the PWM data encoding as an 

alternative encoding for wireless communication to 

be used in low cost and low power sensors. The 

main advantage of this encoding is the ability to 

implement the transmitter and the receiver without 

much hardware support and of being less sensitive 

to timing errors. The paper also compares this type 

of encoding to a more traditional encoding like 

Manchester and shows from the experimental results 

that the loss in performance is not significant. 

Therefore we considered that the advantages of the 

PWM encoding are greater than the loss in 

performance as compared to the Manchester 

encoding and for our sensor network application we 

decided to use the PWM encoding for the radio 

communication. 
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