
 Trajectory Based Hand Gesture Recognition

DANIEL POPA, GEORGIANA SIMION, VASILE GUI, MARIUS OTESTEANU

Faculty of Electronics and Telecommunications

“Politehnica” University of Timisoara

Bd. V. Parvan, Nr. 2, 300223 Timisoara

ROMANIA

gheorghe.popa@etc.upt.ro, georgiana.simion@etc.upt.ro, vasile.gui@etc.upt.ro,

marius.otesteanu@etc.upt.ro

Abstract: The recognition of hand gestures from image sequences is an important and challenging problem.

This paper presents a robust solution to track and recognize a list of hand gestures from their trajectory. The

CamShift algorithm is used for hand tracking and the resulting trajectory is segmented into strokes. The

trajectory of recognized gestures consists of at least 2 strokes. The gestures are classified based on the number

of strokes, the strokes’ angle sequence and, eventually, strokes proportionality. The low computational cost of

the algorithm allows implementation on low-cost processing systems.

Key-Words: video tracking, CamShift, robust methods, gesture recognition, human machine interface.

1 Introduction
Human gestures [1] are expressive human body motions,

which generally contain spatial and temporal variation.

To handle these variations, an appropriate representation

must be chosen.

A vast amount of work in gesture recognition has

been performed in the area of computer vision, and is

reviewed in [2]. These works can be divided into two

categories: trajectory-based and dynamics model-based

analysis. The trajectory-based approach matches curves

in configuration space to recognize gestures [3]. The

dynamics model-based approach learns a parametric

model of gestures.

Gesture recognition systems in general are composed

of three main [4] components: image preprocessing,

tracking, and gesture recognition. In individual systems

some of these components may be merged or missing,

but their basic functionality [5] will normally be present.

Image preprocessing is the task of preparing the

video frames for further analysis by suppressing noise,

extracting important clues about the position of the

object of interest (for example hands) and bringing these

on symbolic form. This step is often referred to as

feature extraction.

Tracking – on the basis of the preprocessing, the

position and possibly other attributes of the object

(hands) must be tracked from frame to frame. This is

done to distinguish a moving object of interest from the

background and other moving objects, and to extract

motion information for recognition of dynamic gestures.

Gesture recognition decides if the user is performing

a meaningful gesture based on the collected position,

motion and pose clues.

The classical algorithms from the field of pattern

recognition are Hidden Markov Models (HMM),

correlation, and Neural Networks. Especially the first

two have been used successfully in gesture recognition

while the Neural Networks often have the problem of

modeling non-gestural patterns [6]. HMM is a typical

dynamics model and was proven to be robust in its

recognition of gestures [7]. The HMM model has been

extended to a more general model named Dynamic

Bayesian Networks [8].

Black and Jepson extended the CONDENSATION

algorithm [9], to recognize gestures and facial

expressions in which human motions were modeled [10],

[11], [12] as temporal trajectories of some estimated

parameters (which describe the states of a gesture or an

expression) over time.

 Many gesture recognition methods used colored

gloves or markers to track hand movements. Fels and

Hinton used data gloves and Polhemus sensors to extract

3D hand location, velocity, and orientation [13]. Bobick

and Wilson [14] extract 3-D location of hands using

stereo cameras and skin color to recognize a set of 32

size gesture using parameterized hidden Markov Model

and data glove.

Recognition of human gestures is important for human-

computer interfaces, automated visual surveillance, video

library indexing [1], remote control of home appliances,

such as TV sets and DVD players [15], which in the

future could be extended to the more general scenario of

ubiquitous computing in everyday situations, control of a

videogame etc.

In this paper hand gestures and a trajectory based

approach are used. Our goal is to develop a low

computational cost real-time gesture recognition

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 115

algorithm for a human-machine interface (HMI), able to

run on low-complexity hardware systems. The system

must be able to learn from the user a small number of

gestures in order to recognize them later. The trajectory

based approach was chosen as skin detection is quite

well developed and robust [16] and relatively robust low

computational cost tracking algorithms are also available

[17], [18].

2 Problem Formulation
Our purpose is to track and discriminate some hand

gestures composed of multiple quasi-linear segments

(strokes). The algorithm must be able to distinguish the

gestures based on the number of segments, the angles

between segments and the horizontal axis, the angles

between consecutive segments and segments

proportionality.

Using these parameters it is possible to define a

variety of gestures which can be easily discriminated:

square, wide/tall rectangle, triangle, Z, N

vertical/horizontal multiple strokes, cross etc. Each

gesture may have a different meaning depending on the

movement direction. For example one action can be

associated with drawing a square clockwise, and another

(possibly opposite) action can be associated with

drawing a square counterclockwise.
The Hue, Saturation, Value (HSV) color space is

usually preferred [17] instead of the Red, Green, Blue

(RGB) color space in human skin tracking

applications because hue is less sensitive to different
skin colors and because it is more robust to illumination

changes.

As the overall computational cost must be low,

complex tracking solutions like those based on particle

filters are not appropriate, and a tracking algorithm

based on target representation and localization must be

used. Such a solution is offered by the CamShift

(Continuously Adaptive Mean Shift) algorithm

introduced by Bradski [17]. An implementation of

this algorithm is available in the OpenCV library

[19].
The CamShift Algorithm mainly consists of the

following steps:

1. Choose the initial location of the search window;

2. Mean Shift (one or many iterations); store the

zeroth moment;

3. Set the search window size equal to a function of

the zeroth moment found in Step 2;

4. Repeat Steps 2 and 3 until convergence.

The algorithm outputs the center, size and orientation

of the tracked object. The object trajectory can be

obtained from the positions of the center of the object in

successive frames.

3 Problem Solution
The method we propose, presented in figure 1, uses a

CamShift tracker to track the hand of the user and saves

a trajectory obtained from the centers of the tracked

region. The saved trajectory is then segmented into

strokes. Considering all the gestures used are composed

of a reduced number of strokes, information like number

of strokes, average angles with horizontal axis, angles

with neighboring segments and segments proportionality

can be easily derived from the segmented trajectory.

Finally, based on the extracted features the gesture is

uniquely identified.

Fig. 1. Flow diagram of the trajectory based

recognition algorithm

3.1 Tracking
The region containing the hand to track must be firstly

selected. Then, a mask is applied on the HSV image in

order to eliminate the pixels which have too small

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 116

saturation and also pixels with too small or too high

value. Hue is too noisy for these removed pixels.

A model of the desired hue of the object to track is

created for the first frame using a color histogram. The

CamShift algorithm is then used to track the object in the

next frames.

3.2 Trajectory recording
The consecutive centers of the tracked region define a

relatively rough (noisy) trajectory, increasing the

difficulty of strokes detection. Therefore the trajectory is

smoothed so that each new recorded trajectory point,

[]t i , is obtained as a weighted average of the new

measured point, []m i , and the previous trajectory point,

[]1t i − :

 [] [] () []1 1 .t i m i t iα α= + − − (1)

Our practical tests revealed that a value of 0.4 for the

weighting parameter, α , produces a relatively smooth

trajectory. Smaller values tend to oversmooth the

trajectory, while larger values lead to relatively rough

trajectories.

The recording of a new gesture trajectory is triggered

by a movement of the user’s hand occurring after a short

interval (1-2 seconds) of static position. Minimum

thresholds are imposed to the amplitude and speed of the

movement in order to avoid false triggering due to

tracking noise or hand trembling. The gesture trajectory

recording ends when the movement speed falls below

the imposed threshold for at least 2 seconds.

A set of angles with the horizontal axis is computed

over the recorded trajectory. Computing the angle for

each small segment determined by two consecutive

points of the trajectory may result in a very noisy angle

set, with many false angle discontinuities. This noise is

caused by angles between trajectory points that are

relatively close to each other, because the image is

sampled on a rectangular grid. Selecting a reduced

number of trajectory points using a fixed step (e.g.

choosing each second or third point of the trajectory)

results in a relatively smoothed angle set. Improved

results can be obtained by adaptively selecting trajectory

points based on a threshold distance. Even with the fixed

step selection, a distance threshold must be imposed in

order to avoid computing the angle if the two points

have the same position.

3.3 Trajectory segmentation
In order to split the trajectory into strokes, the ends of

these strokes must be detected. The starting point of the

trajectory is also the starting point of the first segment,

and the end point of the trajectory is the end point of the

last segment. All other strokes’ end points are detected

as angle discontinuity points, the starting point of each

segment being the end of the previous segment. A stroke

discontinuity is detected as a point between two small

segments which have significantly different angles with

the horizontal axis. For this purpose a derivative over the

angles set is computed:

[] [] [] []

1
[] 1 .

(1)

i id
i i i

di i i

θ θθ
θ θ

− −
= = − −

− −
 (2)

All the maximums of the absolute value of this

derivative which exceed an imposed threshold indicate

an important angle discontinuity and correspond to

stroke ends. Usually a threshold of 30° is enough to

reject the small segments angle noise. When computing

the derivatives, special care must be taken due to the

circular definition of angle, so the angle difference must

also be computed on a circular domain (e.g. the

difference between angles of –179° and 178° is of 3° not

–357°). Therefore, the angle difference in (2) is

computed using the relation:

[] [] [] []
[] [] [] []
[] [] [] []

1 360, 1 180

[] 1 , 1 180

1 360, 1 180

i i i i

d
i i i i i

di
i i i i

θ θ θ θ
θ

θ θ θ θ

θ θ θ θ

 − − + − − < −

= − − − − ≤

− − − − − >

(3)

Another threshold must be imposed on the minimum

length of a stroke, in order to avoid detection of false

strokes. A reasonable value for this threshold is 1/10 of

the image height.

3.4 Feature extraction
After the stroke ends are detected, the parameters of

the trajectory are extracted. The useful parameters which

must be extracted are: the number of strokes, the strokes’

angle sequence and the strokes’ lengths.

The number of strokes can be easily obtained from

the number of stroke ends. Also the strokes’ lengths can

be easily obtained using the coordinates of the stroke

ends.

The analysis of the angle sequence is done

sequentially, at each step being possible to stop the

algorithm, if an angle value can not be classified.

Each gesture known by the system is represented by a

codified angle sequence. The angles of the 8 directions

allowed and the associated codes are presented in table

1. Opposite directions have complementary codes.

Table 1

Angle [°] 0 45 90 135 –45 –90 –135 180

Code 0 1 2 3 4 5 6 7

A mean angle is computed over each stroke, and then

the angles between consecutive strokes may also be

computed. The mean angle of the segment must be

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 117

classified and assigned to one of the 8 classes. In order

to assign the angle to a class, its value must fit a ±20°

window around the standard value. A 5° guard space is

left between consecutive windows as shown in figure 2.

If a stroke’s angle falls within a guard space, it is not

possible to classify it and the analysis is stopped,

invalidating the current gesture.

07

1

2

3

4

5

6

Fig. 2. Angle classes

The first angle of the sequence is the angle between

the first stroke and the horizontal axis, while the next

angles can be either the angles made by each stroke in

the sequence with the horizontal axis or with the

previous stroke. The second solution may increase the

robustness to small global trajectory rotations.

3.5 Gesture discrimination
A gesture consists of a minimum of 2 strokes. Each

gesture is uniquely identified based on:

• number of strokes (>1),

• angle sequence and

• strokes proportionality.

The discrimination process is done sequentially,

based on the 3 parameters, as shown in figure 3. As all

the gestures that reach this processing step were already

validated from the number of strokes and angle sequence

point of view, these parameters are strict, while the

stroke proportionality is allowed to vary within an error

window.

The first parameter to take into account when

discriminating between gestures is the number of

strokes. This step removes from further analysis all the

gestures with different number of strokes.

In the next step the angle sequence is decoded. In

most cases this step is enough to uniquely identify the

gesture and terminate the analysis.

Some 4-stroke gesture codes (e.g. square/rectangle

codes) need further classification based on strokes

proportionality. The strokes proportions are allowed to

vary within an error window. The error window must be

chosen large enough to accommodate the imperfections

of the hand drawn trajectory, but small enough to allow

correct discrimination between different gestures.

Fig. 3. Sequential gesture discrimination

4 Results
The hardware processing system we used to implement

and test the solution was a PC with a 1.6 GHz AMD

Athlon XP processor and 768 MB of RAM. Video

acquisition was realized using a commercial USB

webcam with 352×288 video resolution. The software

application was implemented in Visual C++ and some

functions from the OpenCV library were used.

Fig. 4. The CamShift tracker.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 118

Our application uses a tracker based on the CamShift

function of the OpenCV library. This algorithm is able to

track well a hand based on the hue, assuming saturation

and value thresholds are relatively well calibrated and no

occlusions with objects of similar color occur. Figure 4

presents the tracker focused on a hand.

The recorded trajectory for a 3-stroke gesture is

presented in figure 5.

Fig. 5. Trajectory of a 3-strokes gesture.

Histograms for 2, 3 and 4-strokes gestures are

presented in figure 6. The 3 histograms of subsection

angles indicate that the subsection angles are clustered,

allowing easy separation of the strokes.

a)

b)

c)

Fig. 6. Angle histogram for: a) 2-stroke gesture, b) 3-

stroke gesture, c) 4-stroke gesture.

The resulting mean stroke angle sequence for the

gesture in figure 5 is: 49.9°, -92.1°, 174.1°, values which

easily fit the tolerance window around the standard

directions. The resulting coded sequence for this

example is “1, 5, 7”.

The total number of possible gestures composed of a

certain number, n, of strokes using the 8 directions is
18 7n−× . For the first stroke, all the 8 directions are

possible. For each subsequent stroke only 7 possible

directions are available (the direction of the previous

stroke is excluded). Over 3000 gestures are possible

even with a maximum of only 4 strokes, and the total

number of possible gestures increases exponentially with

the number of strokes.

Not all of the possible gestures can be used in

practical applications (e.g. successions containing more

than 2 strokes with positive y∆ , without at least one

stroke with negative y∆ are very likely to exceed the

frame space captured by the camera).

We tested the solution for a small number of gestures

composed of 2, 3 and 4 strokes, with sharp and/or right

angles between consecutive strokes and the results are

promising. Our algorithm runs in real time on the

specified hardware system, being able to recognize

successfully the gestures we tested so far.

5 Conclusions
Other gesture recognition solutions, [20], [21], rely on

processing different successions of shape and positions

of the hand and achieve relatively good successful

recognition rates at the price of significantly higher

computational complexity.

Our solution has a reduced computational

complexity, using a mean-shift based tracker, and

syntactic, trajectory based gesture recognition. Our

project is still in an early phase and the tests we were

able to make so far are not very extensive, but the

obtained results are promising, entitling us to believe it

is possible to achieve good successful recognition rates

at a reduced computational cost.

The low computational cost allows the use of the

algorithm to implement HMIs on relatively cheap

systems. The user can train the system to associate each

valid gesture to a specific action.

Further developments include better definition of

valid gestures, in order to exclude the gestures which

would normally exceed the area of the frame captured by

the camera, being also possible to relax the angle

restrictions for some classes of gestures (e.g. allow

equilateral triangles). An audio feedback to the user

would also be useful, in order to allow it to focus its

sight on its main activity (e.g. driving).

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 119

References:

[1] T. S. Wang, H. Y. Shum, Y. Q. Xu and N. N. Zheng,

Unsupervised Analysis of Human Gestures, IEEE

Pacific Rim Conference on Multimedia, 2001, pp.

174-181.

[2] Y. Wu, T. Huang, Vision-Based Gesture

Recognition: A Review, Proceedings of the

International Gesture Recognition Workshop, 1999,

pp. 103-115.

[3] L. Campbell and A. Bobick.: Recognition of Human

Body Motion Using Phase Space Constraints,

Proceedings of the Fifth International Conference on

Computer Vision, 1995, pp. 624-630.

[4] T. Moeslund and L. Nrgaard, A Brief Overview of

Hand Gestures used in Wearable Human Computer

Interfaces, Technical Report CVMT 03-02,

Computer Vision and Media Technology Laboratory,

Aalborg University, DK, ISSN: 1601-3646, 2003.

[5] V.I. Pavlovic, R. Sharma, and T.S. Huang, Visual

Interpretation of Hand Gestures for Human-

Computer Interaction: A Review, IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol.

19, No. 7, 1997, pp. 677–695.

[6] H.K. Lee and J.H. Kim, An HMM-based Threshold

Model Approach for Gesture Recognition, IEEE

Transactions on Pattern Analysis and Machine

Intelligence, Vol. 21, No. 10, 1999, pp. 961–972.

[7] T. Starner and A.Pentland.: Visual Recognition of

American Language Using Hidden Markov Models,

Proceedings of the International Workshop on

Automatic Face and Gesture Recognition, Zurich,

1995, pp. 189-194.

[8] V. Pavlovic, J. M. Rehg and J. MacCormick, Impact

of Dynamic Model learning on Classification of

Human Motion, Proceedings of the International

Conference on Computer Vision and Pattern

Recognition, 2000, pp. 788-795.

[9] M.J. Black and A.D. Jepson, A Probabilistic

Framework for Matching Temporal Trajectories:

CONDENSATION-Based Recognition of Gestures

and Expressions, Proceedings of the Fifth European

Conference on Computer Vision, 1998, pp. 909-924.

[10] M. H. Yang, N. Ahuja and M. Tabb, Extraction of

2D Motion Trajectories and Its Application to Hand

Gesture Recognition, IEEE Transactions on pattern

analysis and machine intelligence, Vol. 24, No. 8,

2002, pp. 1061- 1074.

[11] L. Nørgaard, Probabilistic Hand Tracking for

Wearable Gesture Interfaces, Master’s thesis,

Laboratory of Computer Vision and Media

Technology, Aalborg University, Denmark, 2003.

[12] J. Lin, Y. Wu, and T.S. Huang. Capturing human

hand motion in image sequences. Proceedings of

IEEE Workshop on Motion and Video Computing,

2002, pp. 99-104.

[13] S.S. Fels and G.E. Hinton, Glove-Talk II: A Neural

Network Interface which Maps Gestures to Parallel

Format Speech Synthesizer Controls, IEEE

Transactions on Neural Networks, Vol. 9, No. 1,

1997, pp. 205-212.

[14] A.D. Wilson and A.F. Bobick, Parametric Hidden

Markov Models for Gesture Recognition, IEEE

Transactions on Pattern Analysis and Machine

Intelligence, Vol. 21, No. 9, 1999, pp. 884-900.

 [15] S. Lenman, L. Bretzner and B. Thuresson,

Computer Vision Based Recognition of Hand

Gestures for Human-Computer Interaction,

Technical report TRITANA -D0209, CID-172, ISSN

1403-0721, Department of Numerical Analysis and

Computer Science, 2002.

[16] M. J. Jones and J. M. Rehg, Statistical Color

Models with Application to Skin Detection,

Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, 1999, 274-280.

[17] G. R. Bradski, Computer vision face

tracking as a component of a perceptual user

interface, Intel Technology Journal Q2 1998 ,

http://developer.intel.com/technology/itj/archive/199

8.htm.

[18] D. Comaniciu, V. Ramesh, P. Meer, Kernel-Based

Object Tracking, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 25, No. 5,

2003.

[19] http://opencvlibrary.sourceforge.net.

[20] L. Bretzner, I. Laptev and T. Lindeberg, Hand

gesture recognition using multi-scale colour features,

hierarchical models and particle filtering,

Proceedings of the Fifth IEEE International

Conference on Automatic Face and Gesture

Recognition, 2002, pp 405-410.

[21] J.H. Shin, J.S. Lee, S.K. Kil, D.F. Shen, J.G Ryu,

E.H. Lee, H.K. Min and S.H. Hong, Hand Region

Extraction and Gesture Recognition using entropy

analysis, IJCSNS International Journal of Computer

Science and Network Security, Vol. 6 No. 2, 2006,

 pp. 216-222.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 120

	Text4:

