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Abstract: - By harmonics pollution it is usually understood one of the basic problems of the electric energy 
supply quality – the presence of higher harmonics. In contemporary electric energy networks they are due to 
nonlinear loads of various natures. These higher harmonics have to be suppressed and this is done by filtering. 
Active filtering is done by feedback structures where the filter properties may be controlled. The present paper 
aims to discuss some theoretical aspects which are of the same nature as the harmonic balance applied to 
feedback control systems for the techniques of the describing function. Some connections to harmonics 
suppression in mechanical engineering (the feedback vibration absorbers) are also pointed out. 
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1 Basics and Problem Statement 
A. A standard equivalent diagram of harmonics 
pollution is represented by a source and a nonlinear 
load to which we may add the feed line (normally 
inductive). A simple equivalent representation 
would be as follows (fig. 1) 
 
 
 
 
 
 
 
 
 

Fig. 1 Basic equivalent circuit 
 

whose equations may be written as follows 
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It appears quite clear that the nonlinear load 

which is current controlled i.e. it has a characteristic 
of the form ( )u f i=  introduces a nonlinear 
feedback which appears to generate a model which 
is much alike to that of the so-called absolute 
stability problem (see, e.g. the book of Vidyasagar, 
[1]): a feedback composed of a linear block having 
transfer function a rational strictly proper, 

( ) ( ) ( )H s N s D s=  and of a nonlinear static bloc 
with its characteristic defined by f  (fig. 2). 

 
 
 
 
 
 
 
 
 
 

Fig. 2 Feedback structure 
 

The difference with respect to the standard 
structure is the forcing term ( )E t  which substitutes 
the stability problem by a problem of forced 
oscillations. This problem is less popular while it 
goes back to a paper of Yakubovich [2], being fully 
treated in a paper of Barbălat and Halanay [3]. It is 
worth recalling their result here. 

Theorem 1. Consider the feedback structure of 
fig. 2 under the following basic assumptions: 

i) the linear part is exponentially stable, in 
particular ( )H s  has all its poles with strictly 
negative real parts; 

ii) the nonlinear function ( )f σ  is globally 
Lipschitz i.e. it satisfies the following inequality 
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iii) the following Popov-like, with zero free 
parameter, frequency domain inequality holds 

 
1 Re ( ) 0H j
L

ω+ >      (3) 

 
Then the system has a unique limit regime which is 
of the type of the forcing exogenous signal ( )E t  i.e. 
constant when ( )E t  is constant, periodic when ( )E t  
is periodic and almost periodic when ( )E t  is almost 
periodic. Moreover this limit regime is 
exponentially stable. 

Some comments are necessary. The fact that the 
limit regime i.e. the steady state motion is 
reproducing the exogenous signal is a standard 
property of the linear systems. In the nonlinear case 
the above theorem gives conditions for the same 
kind of properties in some nonlinear cases. This is 
called almost linear behavior [4]. We may check the 
fulfillment of the assumptions of Theorem 1 for 
system (1). It is not difficult to see that for (1) the 
transfer function ( )H s  is the transfer function of the 
linear system 
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= − +

= − −
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and reads 
 

1 1( )
L L S S

H s
L s R L s R

= +
+ +

    (5) 

 
with two real negative poles and satisfying 
 

2 2 2 2 2 2Re ( ) 0,SL

L L S S

RRH j
R L R L

ω ω
ω ω

= + > ∀
+ +

  (6) 

 
Concerning the types of the exogenous signals it 

is obvious that they describe d.c. sources (constant 
signals), a.c. sources (periodic signals) and 
modulated sources (almost periodic signals). 

B. The interest in the harmonics pollution 
problem is in connection with the case of a.c. 
sources. The main conclusion of the theorem for this 
case ensures a periodic steady state for periodic (in 
particular harmonic) source, also the preservation of 
the period, but says nothing about the harmonics 
contents. Or the specific technical problem is here 
as follows: the nonlinear load is generating higher 

harmonics while the linear subsystem is filtering 
them. Unfortunately the standard grid structure has 
not good filtering properties and they have to be 
corrected by passive/active filters. 

 
  

2 About the Harmonics Contents 
In order to compute the harmonics contents subject 
to the basic grid filtering properties only, we shall 
apply to the structure of fig. 2 the method of the 
harmonic balance ([5], [6]). With this aim we shall 
analyze a general case suggested by the feedback 
structure of fig. 2; for this reason we consider a state 
representation of the transfer function ( )H s  namely 
the triple ( , , )A b c  to obtain a system which 
generalizes in fact (1) 
 

( ) ( )Tx Ax b c x f tϕ= − +     (7) 
 
satisfying the conditions of Theorem 1. Under these 
assumptions, if ( )f t  is T -periodic system (7) has a 
unique exponentially stable periodic solution ( )x t . 
A rather straightforward computation suggested by 
Pervozvonski [6] gives the following representation 
for ( )x t  
 

0 0
( ) ( ) ( ( )) ( ) ( )

T T
T

T Tx t G t b c x d G t f dτ ϕ τ τ τ τ τ= − − + −∫ ∫

       (8) 
  
where ( )TG t  is the Green matrix function extended 
by T  periodicity and thus defined by 
 

1( ) ( ) , 0 ,
( ) ( )

At AT
T

T T

G t e I e t T
G t T G t

−= − ≤ ≤
+ ≡

   (9) 

 
Using (9) we obtain the integral equation of the 

periodic output of the system 
 

0

0

( ) ( ) ( ) ( ( ))

( ) ( )

T
T

T

T
T

T

t c x t h t d

c G t f d

σ τ ϕ σ τ τ

τ τ τ

≡ = − − +

−

∫

∫
             (10) 

 
where ( ) ( )T

T Th t c G t b= . 
Using approximation techniques for solving 

operator equation (see, Krasnosel’ski et al., [7]) we 
may solve this nonlinear integral equation, but here 
we aim to a qualitative estimate of the harmonic 
contents. 
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If, as in the main application of Section 1, the 
forcing signal is harmonic and therefore, the second 
term in the right hand side of (10) will result also 
harmonic. The higher harmonics, as known from the 
describing function technique, are generated by the 
nonlinear function ( )ϕ ⋅ ; if we follow the way of the 
method of the harmonic balance we find the 
following Fourier expansion 
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t e
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∑
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              (11) 

 
These harmonics are filtered by the convolution 

with the T -periodized Green impulse response 
( )Th t . The periodic impulse response has its own 

Fourier series 
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               (12) 

 
It is interesting to compute the Fourier 

coefficients of ( )Th t  what reduces to the 
computation of the Fourier matrix coefficients of the 
matrix Green function ( )TG t . We shall have 
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where 1( ) ( )TH s c sI A b−= −  is the transfer function 
of the linear part of (7). 

Now, the two terms of the right hand side of (10) 
are both cyclic convolutions of periodic functions. 
The result is periodic and the corresponding Fourier 
coefficients are the products of the coefficients of 
the two functions entering in cyclic convolution 
(see, e.g. Oppenheim and Willsky [8]); since the 
cyclic convolution is an integral of the form of (10) 
multiplied by 1 T , we have to multiply the 
coefficient product by T  to find  

 

0
ˆ( ) ( ( )) ( )

T
jk t

T kh t d H jk e ωτ ϕ σ τ τ ω ν
∞

−∞
− − = ∑∫         (14) 

 

i.e. each harmonic is attenuated according to the 
gain frequency domain characteristic of system’s 
transfer function (associated to the linear part). The 
same is true for the other convolution: 
 

1

0

ˆ( ) ( ) ( )
T

T T jk t
T kc G t f d c A jk I f e ωτ τ τ ω

∞
−

−∞
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            (15) 
 

with k̂f  being the Fourier coefficients of the forcing 
periodic function. This will give the equations of a 
harmonic balance 
 

1 ˆˆˆ ( ) ( )T
k k kc A jk I b fσ ω ν−= − − +              (16) 

 
Now, if the forcing is harmonic ˆ 0, 1kf k= ≠  

and if ϕ  is an odd function then 0ˆ 0ν = . 
The harmonics pollution is expressed by the 

Fourier coefficients 
 

ˆˆ ( ) , 1k kH jk kσ ω ν= − >               (17) 
 
The filtering means reduction of the coefficients 

up to an acceptable level. 
 

 
3  Passive and Active Filtering  
Passive filtering is the simplest standard way of 
filtering. It requires a series linear system with the 
transfer function ( )FH s  such that (17) should 
become  
 

ˆˆ ( ) ( ) , 1k F kH jk H jk kσ ω ω ν= − >              (18) 
 
with ( ) ( ) 1FH jk H jkω ω . This simple solution is 
applicable with difficulty in power grids because of 
two reasons: high power levels and relatively low 
frequencies to filter (unlike in electronic circuits); 
these circumstances will lead to such disadvantages 
as high costs and bulky devices. 

Active filtering is also based on low pass filters 
but, from the system point of view is more like a 
parallel connected filter what transforms the 
structure of fig. 2 in the structure of fig. 3. 

Using the standard rules of diagram reduction we 
find that the structure of fig. 1 will be preserved 
with a new transfer function 

 
( )( )

2 ( )F
H sH s

F s
=

+
               (19) 
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where ( )F s  is a low-pass filter. This filtering 
structure has mainly technological advantages. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Active filtering (systemic view) 
 

The design techniques for ( )F s  are somehow a 
consequence of the technological choice. Moreover 
the technical realization introduces new nonlinear 
elements and it is not very clear if these 
nonlinearities compensate or not the existing ones of 
the load. Should it be so, this would lead to a 
resulting “weak nonlinearity” what would 
considerably reduce the harmonic contents. Another 
idea could be the application of the feedback 
structures occurring in mechanical vibration 
absorbers. It is known, for instance, that the 
standard Frahm absorber (see e.g. the books of Den 
Hartog [9] or Bulgakov [10]) can completely 
suppress an harmonic perturbation. This application 
would require an electrical model of the absorber 
and its implementation. 

Proliferation of nonlinear loads in power systems 
has increased harmonic pollution and deteriorated 
power quality. To improve power quality when 
transient harmonics appear, the dominant harmonics 
identified from Prony analysis are used as the 
harmonic reference for harmonic selective active 
filters [11]. 

Some recent methods for design the control of 
active power filters are presented in [12] and [13].  
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