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Abstract: - The linear stability analysis of shallow water flows is performed in the present paper. The base 

flow is modeled as a wake-shear layer and it is described by a two-parameter family of velocity profiles where 

one parameter characterizes the velocity deficit in the wake while the other parameter is the velocity ratio 

typical for the analysis of mixing layers. The linear stability problem is solved numerically for different values 

of the parameters. It is shown that the increase in velocity deficit as well as larger velocity ratios leads to less 

stable flow, but the velocity deficit is more destabilizing than the velocity ratio. The results of the present 

study can be applied in practice to control water quality on the sheltered side of islands. 

 

Key-Words: - linear stability analysis, weakly nonlinear theory, shallow water flows 

 

1   Introduction 
Shallow water flows are widespread in nature and 

engineering. By definition, water flow is called 

shallow if the transverse length scale of the flow is 

much larger than the water depth. From 

environmental point of view, the structure of 

shallow wake flows (i.e., flows behind obstacles 

such as islands or headlands) is very important. 

Experimental and theoretical studies have shown 

that the flow pattern in the wake of obstacles is 

rather complex. The presence of eddies results in 

complex flows which can trap sediments and 

pollutants. Thus, the understanding of the structure 

of wake flows can help to control water quality and 

is important in making decisions on where to locate 

outfall discharges, mud disposals and cooling 

intakes. In addition, islands can provide shelter for 

marine culture from the prevailing winds. As a 

result, poor water quality induced by the eddies 

behind islands can lead to fish decease and mortality 

[3].   

    One of the methods for the analysis of the 

structure of shallow flows is based on linear stability 

theory [1]-[5].Theoretical analysis of linear and 

weakly nonlinear stability of shallow water flows 

(flows behind obstacles such as islands) is 

performed in [1]-[4]. Experimental studies of 

shallow water flows are presented in [6], [7]. Three 

different flow regimes are identified experimentally 

in [6], that is, steady bubble, unsteady bubble and 

vortex street. It is shown in [2]-[4] that these 

regimes are related to convective or absolute 

instabilities in shallow wakes.  

     The linear stability theory provides the marginal 

stability curve which separates the regions of linear 

stability and instability. The critical values of the 

parameters are also calculated by means of the linear 

stability theory. The development of the most 

unstable mode in a weakly nonlinear regime (that is, 

in the case where the value of the parameter of the 

flow such as the Reynolds number is slightly larger 

than the critical value) is often described by a 

relatively simple amplitude evolution equations such 

as complex Ginzburg-Landau equations. The 

complex Ginzburg-Landau equation is derived from 

the Navier-Stokes equations (for the case of a plane 

Poiseuille flow) in reference [8]. Later (see, for 

example, [3], [9], [10]) the Ginzburg-Landau 

equation was derived for other flows (including 

shallow water flows [3]).   

     The Ginzburg-Landau model is quite popular in 

applications [11], [12]. One reason is that it can 

exhibit a rich variety of solutions depending on the 

values of the coefficients of the Ginzburg-Landau 
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equation [13]. The model includes such effects as 

diffusion and nonlinearity. Since the Ginzburg-

Landau equation is a scalar equation (at least in the 

applications described in the present paper), it is a 

relatively simple task to integrate the equation 

numerically.   

          It is well-known that there are also shear 

layers across the wake [3]. Thus, there is a need to 

analyze the combined plane wake-shear layer 

velocity profile. To the authors’ knowledge, such a 

problem has received little attention in the literature. 

Some results related to the stability of wake-shear 

flows in deep water are presented in [14]. A family 

of plane wake-shear layer velocity profiles is 

analyzed in [15]. It is found in [15] that the presence 

of shear across the wake forces the neutrally stable 

modes to be singular. 

          In the present paper stability characteristics of 

a family of plane wake-shear layer velocity profiles 

are presented. The analysis is performed for shallow 

water flow. Combined effects of shear and bottom 

friction on the stability of wake flows are discussed.  

      

 

2   Linear stability analysis 
The two-dimensional shallow water equations have 

the form 
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Here u and v  are the velocity components in 

the x and y directions, respectively, h is water 

depth, fc is the friction coefficient,  and p is the 

pressure. The system (1) – (3) can be transformed to 

the single equation containing only the stream 

function of the flow, ( , , )x y tψ , which is defined by 

the relations 
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where 
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∂ ∂
.  

Assume that )()( 00 yuyy =ψ is the base flow 

solution. A perturbed solution can be written in the 

form 
2

0 1 2( ) ( , , ) ( , , ) ...y x y t x y tψ ψ εψ ε ψ= + + +       (6) 

Substituting (6) into (5) and keeping only the linear 

terms with respect to ε ,  we obtain 

1 0Lψ = ,                                                                (7) 
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Equation (7) describes the linear stability of the flow 

given by )(0 yuu = . The function 0 ( )u y in the 

present study is chosen in the form 

yr
y

f
yu tanh

cosh
1)(

20 +−= ,                          (8) 

where f is the wake deficit parameter (i.e, the 

velocity deficit divided by the mean ambient 

velocity), r is the velocity ratio (i.e., the velocity 
difference across the layer divided by mean 

velocity). The limiting cases )0( =r  or )0( =f  

represent pure wake flow or mixing layer, 

respectively. The presence of the two parameters in 

(8) allows one to investigate the effect of shear on 

the stability of wake flows. The profile (8) is 

suggested in [15] for the stability analysis of wake-

shear layers in deep water flows and is adopted in 

the present study.  

     Using the method of normal modes we assume 

that the function 1ψ in (7) has the form 

1 1( , , ) ( ) exp[ ( )]x y t y ik x ctψ ϕ= −                              (9) 

where 1( )yϕ is the amplitude of the normal 

perturbation (9). Using (9) and (7) the modified 

Rayleigh equation for the function 1( )yϕ is obtained 

in the form 
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with the boundary conditions  

1( ) 0ϕ ±∞ =                                                          (11) 

Here 
2

fc b
S

h
= is the stability parameter (called the 

bed friction number in [1]) and b is the wake half-

width. Problem (10)-(11) is an eigenvalue problem 

where the eigenvalues are r ic c ic= + . The base 
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flow (8) is said to be stable if all ic are negative and 

unstable if at least one 0ic > .  

   In order to solve the linear stability problem (10) – 

(11) we used a pseudospectral collocation method 

based on Chebyshev polynomials. The Chebyshev 

polynomials are defined on the interval [-1,1]. 

Therefore, we map the interval y−∞ < < +∞ onto 

the interval 1 1z− < < by means of the substitution 

2
arctanz y

π
= . Then we seek the solution to (10) – 

(11) in the form 
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where ( )kT z is the Chebyshev polynomial of degree 

k . The function 1 ( )zϕ is chosen in the form (12) to 

simplify the numerical solution of (10) – (11) since 

the boundary conditions (11) in terms of the variable 

z will be satisfied automatically. The collocation 

points jz are chosen in the form 

cosj

j
z

N

π
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Using (12) we evaluate the function 1 ( )zϕ and its 

derivatives at the collocation points (13). As a result, 

we obtain a generalized eigenvalue problem of the 

form 

 0)( =− aBA λ                                                    (14) 

where A and B are complex-valued matrices and  
T

Naaaa )...( 21= , 

the superscript T denotes the transpose.  

The analysis performed in [16] shows that the 

solution in the form (12) has two advantages in 

comparison with traditional collocation methods 

[17]. First, the matrix B in (14) is not singular so 

that there is no need to perform additional 

transformation of (14) to get rid of the zero rows in 

the matrix B . Second, the condition number of the 

matrices in this method is reduced.  

    Problem (14) is solved numerically by means of 

IMSL routine DGVCCG. The results of 

computations are shown in Figs. 1 – 4.  Figure 1 

plots neutral stability curves for the parameter S  

versus k for 3.0=f  and different values of the 

velocity ratio r . The region of instability is located 
below the curves. It is seen from Fig. 1 that as the 

role of shear across the wake increases (i.e., as the 

parameter r increases), the flow becomes more 

unstable – the maximal values of the parameter S  

also increase. However, the range of the unstable 

values of the wave number k decreases as the 

parameter r grows. In addition, the critical wave 

numbers decrease as the velocity ratio increases (the 

maxima are shifted towards smaller k  values). 
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Fig.1. Neutral stability curves for different values of 

r at 3.0=f . 

 

The neutral stability curves for the parameter 

S versus the wave number k are shown in Fig. 2 for 

the case 2.0=r  and different values of f . The 

flow becomes more stable as the wake deficit 

parameter f decreases. For smaller values of f the 

most unstable mode corresponds to larger 

wavelength (the critical values of k  decrease as 

f decreases).  
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Fig. 2. Neutral stability curves for different values of 

f  at 2.0=r . 
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The critical values of )max( SSS
k

cr = are shown in 

Fig. 3 versus r for different values of f . 

Destabilizing effect of the velocity ratio on wake 

stability is clearly seen from the figure. In addition, 

the critical values of S  grow almost linearly as the 

velocity ratio r  increases.  
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Fig. 3. Critical values of S  versus r for three values 

of f . 

 

The critical values of the stability parameter 

S versus f for different values of r are shown in 

Fig. 4. The increase of the wake deficit parameter 

f has an important impact of the flow instability: 

the critical values of S  grow very quickly as the 

parameter f increases. The comparison of the 

stability diagrams in Figs. 3 and 4 shows that the 

velocity deficit parameter has larger influence on the 

flow instability. The flow becomes more unstable as 

both parameters r and f increase. However, the rate 

at which the flow becomes more unstable is higher 

for the case where the wake deficit parameter 

increases for a fixed r in comparison with the case 

where f is fixed and r increases. 
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Fig. 4. Critical values of S  versus f for three 

values of r . 
 

3   Discussion 
Linear instability analysis of plane wake-shear layer 

velocity profile is performed in the present paper. 

The convective instability boundary is found for the 

two-parameter family of velocity profiles. The 

parameters are the wake deficit parameter f and the 

velocity ratio r . Previous analyses of wake flows in 

shallow water [2]-[4] showed that the wake flow is 

absolutely unstable for large values of f . This fact 

is supported by experimental data in [6]. On the 

other hand, the analysis of mixing layers in [18] for 

deep water showed the presence of the region of 

absolute instability for large values of the velocity 

ratio r . The velocity profiles considered in the 
present paper simulate the presence of shear across 

the wake. Thus, it is plausible to assume that the 

wake-shear layer can also be absolutely unstable in 

some regions in the parameter space. The analysis of 

the transition between absolute and convective 

instability is the topic for future work. 

    It is shown in [3] that if the parameter S is 

slightly smaller than the critical value, then one can 

analyze the development of instability using 

methods of weakly nonlinear theory. It is shown that 

in a weakly nonlinear regime the amplitude of the 

most unstable mode satisfies the complex Ginzburg-

Landau equation. The coefficients of the equation 

are expressed in [3] in terms of integrals containing 

the parameters of the linear stability problem. The 

derivation in [3] is obtained for an arbitrary function 

)(0 yu . Thus, one can also apply the theory 

developed in [3] to plane wake-shear layer velocity 
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profiles (8). The authors are currently working on 

this problem. 
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