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Abstract: - In this paper we describe the development of a fluid-solid finite element to model plates subjected to 
flowing fluid under various boundary conditions. The mathematical model for the structure is developed using 
a combination of the finite element method and Sanders’ shell theory. The membrane displacement field is 
approximated by bilinear polynomials and the transversal displacement by an exponential function. Fluid 
pressure is expressed by inertial, Coriolis and centrifugal fluid forces. Bernoulli’s equation for the fluid-solid 
interface and partial differential equation of potential flow are applied to calculate the fluid pressure. Calculated 
results are in agreement with other analytical theories. 
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1. Introduction 
Systems of plates subjected to fluid flow are often 
found in contemporary industries such as nuclear 
reactors and aerospace. Generally these industries 
require high rates of fluid flow and low plate 
thicknesses. Under these conditions, if the length of 
the plates is excessive the structure becomes very 
susceptible to failure. Earlier works in this field 
were carried out on the engineering test reactor 
(ETR) systems consisting of many thin plates 
stacked in parallel with narrow channels between 
the plates to let coolant flow through. Miller [7] was 
the first to present a theoretical analysis predicting 
the critical flow velocity for divergence. Rosenberg 
et al. [8] have formulated a dynamic model 
describing the motion of a fuel plate in a parallel 
plate assembly. They found that a good agreement 
exists between the results of dynamical model and 
that of neutral equilibrium used by Miller [7]. Three 
parallel plate assemblies were tested by Groninger et 
al. [1] to investigate the flow induced deflections of 
the individual plates. The model showed that 
adjacent plates always move in opposite directions 
at high flow rates. Weaver et al. [11] studied the 
dynamic behaviour of a single flat plate, one side of 
which is exposed to high velocity flow of a heavy 
fluid such as water. More recently, Kim and Davis 
[4] developed an analytical model of a system of 
thin rectangular flat plates. Their model was used to 
investigate static and dynamic instabilities of the 
system. Guo and Paidoussis [2] have conducted a 
theoretical study of the hydro-elastic instabilities of 

rectangular parallel-plate assemblies. The purpose 
of this paper is to develop a solid-fluid finite 
element to study the dynamic response of 
rectangular plate subjected to potential flow. This 
solid-fluid finite element permits us to obtain the 
low as well as the high frequencies of fluid-structure 
systems with precision for any combination of 
boundary conditions without changing the 
displacement field. This element is applied to 
simulate a number of plates and set of parallel plates 
subjected to flowing fluid. The mathematical model 
for the structure is developed using a combination of 
the finite element method and Sanders’ shell theory. 
The velocity potential and Bernoulli’s equation are 
adopted to express the fluid pressure acting on the 
structure. 
 
 
2. Solid finite element  
The solid finite element is shown in Fig. 1, it is a 
portion of a flat plate with a thickness h and four 
nodes (i, j, k, l). Each node has six degrees of 
freedom that represent the in-plane and out-of-plane 
displacement components and their spatial 
derivatives. 
 
2.1 Displacement functions 
The approximation of transversal displacement by 
exponential function and the membrane 
displacements by bilinear polynomials was justified 
when we developed the fluid-solid finite element 
[3]. The displacement field is expressed as:  
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where U and V represent the in-plane displacement 
components of the middle surface in X and Y 
directions, respectively, W is the transversal 
displacement of the middle surface, A and B are the 
plate dimensions in X and Y directions, “ω” is the 
natural frequency of the plate (rad/sec), “i” is a 
complex number and Cj are unknown constants; 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Geometry and displacement field 
 
Eq. (1.c) can be developed in Taylor’s series as 
follows [3]: 
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We can write the displacements, U, V and W in 
matrix form as, 

{ } [ ]{ }CRW,V,U T =          (3) 
where [R] is a (3x24) matrix in which the 
components are the x and y terms of Eq. (1.a, 1.b 
and 2) without the unknown constants [3] and { }C  
is the vector for the unknown constants. The 
components of this last vector can be determined 
using the twenty-four degrees of freedom presented 
for a plate element as shown in Fig. 1. The 
displacement vector of each element is given as: 

{ } { } { } { } { }{ }TT
l

T
k

T
j

T
i ,,, δδδδδ =   (4) 

Each node ‘i’, possesses a nodal displacement 
vector composed of the following terms: 

{ } { }Txy,iy,ix,iiiii W,W,W,W,V,U=δ    (5) 

By introducing Eqs. (1.a, 1.b and 2) into relation (4), 
the elementary displacement vector can be defined 
as function of nodal displacement. The displacement 
field may be described by: 

{ } [ ][ ] { } [ ]{ }δδ NARW,V,U 1T == −     (6) 
where matrix [N] of order (3 ×24) is the shape 
function of the finite element and the terms of 
matrix [A]-1 are given in reference [3].  
 
2.2. Kinematics Relations  
Introducing the displacement components into the 
deformation-displacement relationships given in [9] 
yields to the following equation that describes the 
deformation vector as function of nodal 
displacements.  

{ } [ ][ ] { } [ ]{ }δδε BAQ 1 == −           (7) 
where matrix [Q] of order (6 ×24) is given in 
Appendix.  
The stress-strain relationship of an isotropic 
rectangular plate is defined as follows: 

{ } [ ][ ]{ }δσ BP=     (8) 
where [P] is the elasticity matrix for an isotropic 
plate [3].  
Using the procedure of the classical finite element, 
one obtains the mass and stiffness matrices for a 
typical element:  
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where xe and ye are dimensions of an element 
according to the X and Y coordinates, respectively. 
 
 
3. Fluid-solid interaction 
The fluid pressure acting upon the structure is 
generally expressed as a function of out-of-plane 
displacement and its derivatives i.e. velocity and 
acceleration. These three terms are respectively 
known as the centrifugal, Coriolis and inertial forces 
[10].  
The fluid matrices will be combined with solid 
matrices as follows: 
[ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ][ ]{ } { }0KKCCMM TfsTfsTfs =−+−+− δδδ &&&      (10) 

where [ ]sM , [ ]sC  and [ ]sK  are the global matrices of 
mass, damping and rigidity of the elastic plate, 
[ ]fM , [ ]fC  and [ ]fK  represent the inertial, Coriolis 
and centrifugal forces of potential flow and { }Tδ  is 
the global displacement vector.  
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3.1. Fluid-solid finite element 
The fluid-solid model is developed based on the 
following hypotheses: (i) the fluid flow is potential; 
(ii) vibration is linear; (iii) the fluid mean velocity 
distribution (Ux) is constant across a plate section 
and (iv) the fluid is incompressible. Taking account 
of these assumptions, the velocity potential must 
satisfy the Laplace equation. This relation is 
expressed in the Cartesian system by: 

0zz,yy,xx, =++ φφφ        (11) 
where φ  is the potential function. The Bernoulli 
equation is given by:  

0P2V
0zf

2
r =++

=
ρφ&       (12) 

where P is the fluid pressure, rV  is the fluid 
velocity and fρ is the fluid density. 
 
 
 
 
 
 
 
 
 

Fig. 2:  Fluid-solid finite element 
 
The components of fluid velocity along X, Y, Z 
directions, respectively are defined by: 

x,xx UV φ+=     y,yV φ=      z,zV φ=    (13) 
where Ux is the mean velocity of fluid in the x-
direction. Introducing Eq. (13) into Eq. (12) and 
neglecting the nonlinear terms we can write the 
dynamic pressure at the solid-fluid interface as 
follows (see Fig. 2): 

( )
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The impermeability condition ensures contact 
between the shell and the fluid. This should be  

( )X,x0zZ, wUw+=
=

&φ     (15) 
If we assume that: 

( ) ( ) ( )t,y,xSzFt,z,y,x =φ     (16) 
where F(z) and S(x. y, t) are two separate functions 
to be defined. One can use Eqs. (15) and (16) to 
develop the potential function as:    

( ) ( )x,xWUW
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The only unknown function in Eq. (17) is F(z). By 
introducing Eq. (17) into Eq. (11), we obtain the 
following differential equation of second order: 

0)z(FF 2
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where:  22 B1A1 += πμ  
The solution of last equation is: 

z
2

z
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where A1 and A2 are unknown constants. By 
substituting Eq. (19) into (17) the potential function 
becomes:  
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3.1.1. Fluid-solid finite element subject to flowing 
fluid with infinite level of fluid 
When the flowing fluid height on and/or under the 
plate (h1 and/or h2) is infinite (see Fig. 2),  we 
assume that very far from the plate the potential is 
null, this boundary condition is written as follows: 

±∞→
=

Z
0φ        (21) 

In order to avoid an infinite potential, the constant 
A1 of Eq. (20) must be null. Eq. (15) permits us to 
calculate the second constant A2. Using Eqs (20) and 
(14) the pressure function can be expressed as: 

[ ] [ ]xx,
2
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 (22) 

 
3.1.2. Fluid-solid finite element subject to flowing 
fluid bounded by rigid wall 
As shown in Fig. 3, fluid flows between a rigid wall 
and an elastic plate. This provides another boundary 
condition at Z=h1. This boundary condition is 
adopted by Lamb [6] expressed by:  

0
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Fig. 3: Fluid solid finite element in contact with 
flowing fluid bounded by a rigid wall 

 
Using Eqs. (15) and (23) we can calculate the 
constants A1 and A2. The corresponding dynamic 
pressure becomes:  
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or: 
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3.1.3. Fluid-solid finite element subject to flowing 
fluid bounded by elastic plate 
When the fluid flows through two parallel elastic 
plates, two transverse vibration modes, in-phase and 
out-of-phase, should be considered.  
In the case of in-phase mode the boundary condition 
at fluid limits Z=h1 is expressed as follows [5]:  
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Similarly, A1 and A2 can be calculated by 
introducing Eq. (20) into relations (15) and (26). 
The pressure function can be expressed as: 
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or: 
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In the case of out-of-phase mode the boundary 
condition at Z=h1 is expressed as follows [5]:  

0
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Here again, A1 and A2 can be calculated by using 
Eqs. (20, 29 and 15). The corresponding pressure is:  
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or: 
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3.2 Calculation of fluid-induced force 
The elementary vector of fluid-induced force is 
expressed by:  

{ } [ ] { }∫=
A

v
Te dSPNF              (32) 

where [ ]N  is defined in Eq. (6), { }vP  is a tensor 
expressing the pressure applied by the fluid on the 
plate and S is the elementary fluid-structure 
interface area. By placing the matrix [ ]N  of Eq. (6) 
into Eq. (32), the element load vector becomes:  

{ } [ ][ ] [ ] { }∫ −=
A

v
TT1e dSPRAF         (33) 

The dynamic pressures of Eqs. (22, 25, 28 and 31) 
may be rewritten as: 

[ ]xx,
2
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where Zfi (i=1, 4), depends on the boundary 
conditions (see Eqs. 22, 25, 28 and 31) and P is the 
only non-zero component in the pressure 
tensor{ }vP .  
Substituting Eq. (1.c) into Eq. (34) the pressure 
expression becomes: 
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The transversal displacement can be separated from 
Eq. (6) as follows: 
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where [Rf] is a (3x24) matrix obtained from matrix 
[R] by neglecting the in-plane displacements U and 
V. Substituting (36) into (35), we obtain:  
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By combining Eqs. (33) and (37) the element load 
vector is given by the following relation: 
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We can separate From Eq. (38) the added matrices 
induced by flowing fluid.  
 
 
4. Eigenvalue problem  
The global matrices mentioned in Eq. (10) are 
obtained by superimposing the matrices for each 
individual element. The eigenvalue problem is 
solved by means of the equation reduction 
technique. It may be written as: 

[ ]
[ ] [ ] [ ] [ ] [ ] 0I

CKMK
I0
11 =−⎥

⎦

⎤
⎢
⎣

⎡
−− Λ           (39) 

with  :, 2i/1 ωΛ = and [ ]I  is the identity matrix,  
where [ ] [ ] [ ]fs MMM −= , [ ] [ ]fCC = , [ ] [ ] [ ]fs KKK −=  
and { }Tδ  is the global displacement vector.  
 
 
5. Results and discussions  
We present some calculations to test the solid-fluid 
model in the case of plates subjected to flowing 
fluid.  
To put the results in the nondimensional form, the 
following parameters are defined 

h
B

s

f

ρ
ρ

ψ = , ω
ρ

ω
K

h
B s2= , x

s U
K

h
BU

ρ
=       (40) 

where ψ  is the mass ratio, ω is the dimensionless 
frequency, and U is the dimensionless velocity.  
The first example is a thin plate clamped on two 
opposite edges (see Fig. 4) subjected to flowing 
fluid on its upper and lower surfaces. The fluid level 
(h1 and/or h2) is assumed to be infinite. The 
corresponding dynamic pressure would be twice the 
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pressure calculated in Eq. (22). The geometric ratios 
and dimensionless parameters for the structure are: 

1B/A,/Ah,/Ah,93.0 21 =∞→∞→=ψ  
 
 
 
 
 

 
 
 
 

Fig. 4:  Plate clamped on two opposite edges 
subjected to flowing fluid 
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Fig. 5: Variation of frequency ϖ  versus fluid 

velocity for plate clamped on two opposite edges. 
 
Numerical results were used to plot the curves 
shown in Fig. 5. We note that the plate becomes 
increasingly vulnerable to static instability as the 
rate of flow increases. Beyond the critical velocity 
we expect the occurrence of a large deflection of the 
plate [4].  
In order to investigate the boundary conditions 
effect on the critical velocity value, the same plate 
considered in the first example is studied again, but 
this time with the two opposite edges simply 
supported instead of the two clamped edges. The 
critical velocities corresponding to the three first 
modes are listed in table 1, it can be concluded that 
clamped plates are more stable than simply 
supported plates which is in good agreement with 
the observations of Kim and Davis [4]. 
We have also calculated the critical velocities 
corresponding to the first three modes in the case of 
cantilevered plate (fixed at leading edge) which has 
the same material and geometrical parameters as 
those of the two previous examples. We have 
compared in Table 1 the critical velocities of the 

cantilevered plate with those of simply supported 
and clamped on two opposite edges plates. We 
conclude that the cantilevered plate is more 
vulnerable to static instability 
 
Table 1: Dimensionless critical velocity ( )U  of 
plates with various boundary conditions  

xs UKhBU ρ=   
 

Boundary conditions  Mode 
1 

Mode 
2 

Mode 
3 

Clamped on two 
opposite edges (Fig. 4) 

 
9.58 

 
11.36 

 
18.83 

Simply supported on 
two opposite edges  

 
4.22 

 
6.98 

 
15.83 

 
Cantilevered plate 

 
1.494 

 
3.73 

 
9.25 

 
Parallel-plate assemblies consist of many thin plates 
stacked in parallel; between the plates there are 
narrow channels to let coolant flow through (see 
Fig. 6). All the plates have the same size and are 
uniformly distributed. When channel height is 
relatively low, kinetic energy travels through the 
fluid from one plate to another.  
 
 
 
 
 
 
 
 
 
 

Fig. 6 Engineering test reactor (ETR) system 
subjected to flowing fluid 

 
It has been proven that the dynamic behaviour of 
parallel-plate assemblies supported at two lateral 
walls can be sufficiently predicted using only one 
plate which vibrates in opposite directions relatively 
to its adjacent plates. This condition provides the 
lower critical velocity [2]. Miller [7] derived 
relations expressing the critical velocity of an 
engineering test reactor system. For the case of a flat 
plate simply supported on two opposite edges (see 
Fig. 6), the developed formula is: 

))1(B2(hEh5U 24
f1

3
Miller νρ −=  (41) 

where E is Young modulus, fρ is the fluid density, 
h1 is the channel height, ν  Poisson’s coefficient, h 
is the plate thickness and B is the plate width. 
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Using our numerical model, we have calculated the 
out-of-phase vibrations of an internal plate (simply 
supported on its two opposite edges) from the 
parallel-plate assembly shown in Fig. 6. The 
corresponding dynamic pressure would be twice the 
pressure calculated in Eq. (31). Fig. 7 shows the 
variation of the dimensionless critical velocities of 
the first out-of-phase mode as function of channel 
height to plate length ratio computed by the present 
method and by Miller’s analytical formula. By 
examining Fig. 7, it is clear that the critical velocity 
for a given plate increase by increasing the channel 
height.  
In the same figure, we can see that at low fluid 
height a good agreement is found between the 
numerical and analytical results, but for high fluid 
levels we observe a considerable discrepancy, that 
can be explained by the fact that Miller’s formula is 
derived specifically for parallel plate system with 
very low ratio (h1/A). On the other hand, it is 
important to note that beyond certain fluid height, 
increasing ‘h1’ or ‘h2’ doesn’t have any influence on 
the dynamic behaviour of plate subjected to a 
flowing fluid [4]. 
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Fig. 7:  Dimensionless critical velocity of an 
internal plate in (ETR) versus channel height to 

plate length ratio (h1/A), 1B/A,93.0 ==ψ . 
 
 
6. Conclusions  
A solid-fluid finite element is developed for 
dynamic analysis of plates subjected to the dynamic 
pressure induced by potential flow. The structural 
mathematical model is developed based on a 
combination of the finite element method and 
Sanders’ shell theory.  
The fluid pressure is derived from a potential, it is 
function of acceleration, velocity and the transverse 

displacement of the plate, respectively known as 
inertial, Coriolis and centrifugal effects.  
The critical velocities calculated using our element 
agrees well with those obtained using the analytical 
formulas derived by Miller, especially for the low 
fluid heights. 
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