
A Novel Hybrid Algorithm for Join Ordering Problem in Database
Queries

 Ali Safari Mamaghani1, Kayvan Asghari2, Fariborz Mahmoudi3 and Mohammad Reza Meybodi4

Computer Engineering Department
Islamic Azad University of (1Bonab, 2 Khamene,3 Qazvin)

4Amirkabir University of Technology
Iran

Abstract: - Optimizing the database queries is one of hard research problems. Exhaustive search techniques
like dynamic programming is suitable for queries with a few relations, but by increasing the number of
relations in query, much use of memory and processing is needed, and the use of these methods is not suitable,
so we have to use random and evolutionary methods. The use of evolutionary methods, because of their
efficiency and strength, has been changed in to a suitable research area in the field of optimizing the database
queries. In this paper, a hybrid evolutionary algorithm has been proposed for solving the optimization of Join
ordering problem in database queries. This algorithm uses two methods of genetic algorithm and learning
automata synchronically for searching the states space of problem. It has been showed in this paper that by
synchronic use of learning automata and genetic algorithms in searching process, the speed of finding an
answer has been accelerated and prevented from getting stuck in local minimums. The results of experiments
show that hybrid algorithm has dominance over the methods of genetic algorithm and learning automata.

Key-Words: - Query, Join Operator, Learning Automata, Genetic Algorithms

1 Introduction
Relational data model has been introduced by Codd
[1] and in recent years, relational database systems
have been recognized as a standard in scientific and
commercial applications. Work on join operator,
because of its high evaluation cost, is the primary
purpose of relational query optimizers. If queries be
in the conversational manner, they will include
fewer relations and we can do the optimization of
these expressions by an exhaustive search. However,
in case the number of relations is more than five or
six relations, exhaustive search techniques will bear
high cost regarding the memory and time. Queries
with lots of joins are seen in new systems like
deductive database management systems, expert
systems, engineering database management systems
(CAD/CAM), Decision Support Systems, Data
mining, and scientific database management systems
and etc. Whatever the reason, database management
systems need the use of query optimizing techniques
with low cost in order to counteract with such
complicated queries. A group of algorithms which
are searching for suitable order for performing the
join ordering problem are exact algorithms that
search all of state space and sometimes they reduce
this space by heuristic methods [7]. One of these
algorithms is dynamic programming method which
at first introduced by Selinger et al [2, 9] for

optimizing the join ordering in System-R. The most
important disadvantage of this algorithm is that
increasing the number of relations in queries needs
much use of memory and processor. We can imply
other exact algorithms like minimum selectivity
algorithm [7], KBZ algorithm [10] and AB
algorithm [11].Other algorithms named random
algorithms have been introduced for showing the
inability of exact algorithms versus large queries.
Introduced algorithms in this field are iterative
improvement [5, 6, 12], simulated annealing [5, 12,
13, 14], two-phase optimization [12], toured
simulated annealing [8] and random sampling
[15].According the nature of evolutionary
algorithms and considering this matter that they are
resistant and efficient in most of the cases and by
considering the works done in this field, the most
suitable choice for solving this problem is use of
evolutionary algorithms. The first work in
optimizing the join ordering problem has been done
by Bennet et al [3]. In general, the algorithm used by
them bears low cost in comparison with dynamic
programming algorithm used for System-R. Other
features of this algorithm are the capability to use in
parallel architecture. Some other works have been
done by Steinbrunn et al [7] that they have used
different coding methods and genetic operators.
Another sample of evolutionary algorithms used for

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 104

solving the join ordering problems is genetic
programming which is introduced by Stillger et al
[16]. CGO genetic optimizer has also been
introduced by Mulero et al [17].
In this paper, a hybrid evolutionary algorithm has
been proposed for solving the optimization of Join
ordering problem in database queries. This
algorithm uses two methods of genetic algorithm
and learning automata synchronically for searching
the states space of problem. It has been showed in
this paper that by synchronic use of learning
automata and genetic algorithms in searching
process, the speed of finding an answer has been
accelerated and prevented from getting stuck in local
minimums. The results of experiments show that
hybrid algorithm has dominance over the methods of
genetic algorithm and learning automata. The paper
has been organized as follows: The second part
defines join ordering problem in database queries.
Part three provides brief account of learning
automata and genetic algorithms. Part 4 explains the
proposed hybrid algorithm and on basis of data
analysis, part 5 provides an account of analysis, in
other words it deals with results. The conclusion and
implication will be presented in part 6.
2 The definition of problem
Query optimization is an action that during which an
efficient query execution plan (qep) is provided and
is one of the basic stages in query processing. At this
stage, database management system selects the best
plan from among execution plans, in a way that
query execution bears the low cost, especially the
cost of input/output operations. Optimizer's input is
the internal form of query that has been entered into
database management system by user. The general
purpose of query optimizing is the selection of the
most efficient execution plan for achieving the
suitable data and responding to data queries. In the
other words, in case, we show the all of allocated
execution plans for responding to the query with S
set, each member qep that belongs to S set has
cost(qep) that this cost includes the time of
processing and input/output. The purpose of each
optimization algorithm is finding a member like
qep0 which belongs to S set, so that [3]:

cost(qep)Sqepmin)0cost(qep ∈=

The execution plan for responding to query is the
sequel of algebra relational operators applied on the
database relations, and produces the necessary
response to that query. Among the present relational
operators, processing and optimizing the join
operators which are displayed by symbol ∞ are
difficult operations. Basically, join operator
considers two relations as input and combines their

tuples one by one on the basis of a definite criterion
and produce a new relation as output. Since the join
operator has associative and commutative features,
the number of execution plans for responding to a
query increases exponentially when the number of
joins among relations increases. Moreover, database
management system usually supports different
methods of implementing a join operator for join
processing and various kinds of indexes for
achieving to relations, so that, these cases increase
the necessary choices for responding to a query.
Although all of the present execution plans for
responding to a definite query, have similar outputs,
but while generated inter-relation's cardinality aren't
similar, thus generated execution plans have
different costs. Thus selecting of suitable ordering
for join execution affects on total cost. The problem
of query optimizing which is called the problem of
selecting suitable ordering for join operators
execution, is NP-hard problem [4].
3 Learning automata and genetic

algorithms
Learning automata approach for learning involves
determination of an optimal action from a set of
allowable actions. It selects an action from its finite
set of actions. The selected action serves as input to
the environment which in turn emits a stochastic
response from allowable responses. Statistically,
environment response is dependent to automata
action. Environment term includes a set of all
external conditions and their effects on automata
operation. For more information about learning
automata, you can refer [18]. Learning automata
have various applications such as: routing in
communicative networks, image data compression,
pattern recognition, processes scheduling in
computer networks, queuing theory, accessing
control on non-synchronic transmitting networks,
assisting the instruction of neural networks, object
partitioning and finding optimal structure for neural
networks. For the query with n join operator, there
are n! Execution plans. If we use learning automata
for finding optimal execution plan, automata will
have n! Actions, the large number of actions reduces
speed of convergence in automata. For this reason,
object migration automata proposed by Oomen and
Ma [18]. Genetic algorithms operate on basis of
evolution idea and search optimal solution from
among a large number of potential solutions in
populations. In each generation, the best of them is
selected and after mating, produces new childes. In
this process, suitable people will remain with greater
possibility for next generation [9].

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 105

Proposed hybrid algorithm for solving
join ordering problem
by combining genetic algorithms and learning
automata and integrating gen, chromosome, actions
and depth concepts, historical track of problem
solving evolution is extracted efficiency and used in
the search process. The major feature of hybrid
algorithm is it's resistance versus nominal changes
of responses. In other words, there is a flexible
balance between efficiency of genetic algorithm,
resistance of learning automata in hybrid algorithm.
Generation, penalty and reward are some of features
of hybrid algorithm. It has been explained in the
following basic parameters of this algorithm.
Gen and Chromosome: in proposed algorithm,
unlike classical genetic algorithm, binary coding or
natural permutation representations aren't used for
chromosomes. Each chromosome is represented by
learning automata of object migration kind, so that
each of gens in chromosome is attributed to one of
automata actions, and is placed in a definite depth of
that action. In these automata, }, ... , α, α{αα k21= is set
of allowed actions of automata. These automata
have k actions (the number of actions of these
automata equals with the number of join operators).
If number u join from given query is placed in the m
number action, in this case, number u join will be
mth join of query will be
executed. }, ... , , { KNφφφφ 21= Is set of states and N is
memory depth for automata. The set of automata
states are divided to k
subsets }, ... , , { Nφφφ 21 , }, ... , , { NNN 221 φφφ ++ , …,

 }, ... , , { KNNKNK φφφ 2)1(1)1(+−+− , and join operators are
classified on the basis of this matter that in which
state they are. If number u join of query is placed in
the set },...,,{ 1)2(1)1(jNNjNj φφφ +−+− , in this case,
number u join will be nth join that is executed. In a
set of states of j action, 1)1(+− Njφ is called internal state
and

jNφ

 is called boundary state. The join which has

located in 1)1(+− Njφ is called more certainty and the
join which has located in jNφ is called less certainty.
The join state is changed as a result of giving reward
or penalty, and after producing several automata
generations with genetic algorithm, we can achieve
optimal permutation, and this is the best choice for
the problem. If a join is located in boundary state of
an action, giving penalty causes a change in the
action that join is located on it, and causes new
permutations. Now consider the following query:

(A∞C) and (B∞C) and (C∞D) and (D∞E)
Each join operator has a clause for joining that is
omitted for the simplicity of display, determines

which tuples of joned relations emerge in the result
relation. The above query is represented as graph in
figure1. Capital letters are used for showing
relations and Pi is used for show join operator.

We consider a set of join operators like p1, p2, p3,
p4 to show permutation of join operator executions
with object migration automata, based on Tsetlin
automata. This automata has four actions
{a1,a2,a3,a4} (the same number of query joins) and
depth 5. A set of states like {1,6,11,16,21,26} are
internal status and a set of states like
{5,10,15,20,25,30} are boundary states of learning
automata. At first, each of query joins is in the
boundary state of related action. In hybrid algorithm,
each of chromosome's gen equals with one automata
action, so we can use these two words instead of
each other. Learning automata (chromosome) has
four actions (gen), and each action has five internal
states. Suppose in the first permutation, the order of
join operator executions will be join 3, join 2, join 1
and join 4 respectively. The way of representing
execution order by object migration automata is
shown in figure 2. This matter is done on the basis
of Tsetlin automata. At first, each of these joins is in
the boundary state of related action.

Fig 2. Display of joins permutation (p3, p2, p1, p4) by learning
automata based on Tsetlin automata connections.

Fitness function: In genetic algorithms, fitness
function is the feature for surviving chromosomes.
The purpose of searching the optimized order of
query joins is finding permutation of join operators,
so that total cost of query execution is minimized in
this permutation. One important point in computing
fitness function is the number of references to the

P1 E

P4 P3

P2

C
A

D

B

Fig 1. An example of a query graph

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 106

disc. So, we can define the fitness function of F for
an execution plan like qep as follows:

disk toreferences ofnumber The
1)(=qepF

For computing the number of references to disc (the
cost) of an execution plan, consider execution plan
as a processing tree. The cost of each node as
recursive form (down to up and right to left) is
computing by adding the total number of achieved
costs of the two child nodes, and needed cost for
joining them in order to achieve the final result [7].
For example, we consider join R1∞R2:

In this case, the cost of evaluation equals to
following amounts:

)21()2()1(RRCRCRCtotalC ∞++=

In which, C(Rk) is the cost of achieving to child
node, and is computed is follows:

In a special manner, if R1 and R2 are both the base
relations, the cost Ctotal equals with)(21 RRC ∞ and
according to this matter that we have used nested
loops for join operator implementation, so the
computation cost of join operator will be same as

21
)21(RbRbRRC +=∞ and

kRb is numbers of blocks

of Rk relation
Operators: Considering this that in hybrid
algorithm, each chromosome is represented as
learning automata; crossover and mutation operators
are different from similar operators in simple genetic
algorithms.
Selection operator: The selection used for this
algorithm is roulette wheel.
Crossover Operator: In this operator, two parent
chromosomes are selected and two gens i and j are
selected randomly in one of the two parent
chromosomes. Then these genes are selected in
another parent. A set of gens with numbers between
i and j are called crossover set. Then gens which
have same numbers replace with each other in two
crossover set (for example, i gen from first
crossover set replaces with the i gen from the second
crossover set. i+1 gen from first crossover set
replaces with the i+1 gen from the second crossover
set, and so on). Two new chromosomes are
produced in this way which are so-called the
children of two automata parents. In continue, the
pseudo code of this operator is represented in figure
3. Since, n chromosome (automata) is used in this

algorithm, and each automata has its own special
characteristics (states, action and object like each
action), we represent these features by automata
name and point separator for more readability of
pseudo code.
For example, for showing the join state of u from i
automata, LAi.State(u) has been used. In the
aforementioned algorithm, costi(LA1) is the cost (
the number of reference to disc) for joining the ith
action of first learning automata.

Procedure Crossover (LA1, LA2)
 Generate two random numbers r1 and r2 between 1 to n
 r1 = Random *n; r2 = Random *n;
 r1 = Min(r1, r2), r2 = Max(r1, r2)
 For i = r1 to r2 do
 If (costi(LA1) < costi(LA2)) then
 j = Action of LA2 where
 LA2.Object(LA2.Action(j)) =LA1.Object(LA1.Action(i));
Swap(LA2.Object(LA2.Action(i)),LA2.Object(LA2.Action(j)));
 Else
 j = Action of LA1 where
 LA1.Object(LA1.Action(j))=LA2.Object(LA2.Action(i));
Swap(LA1.Object(LA1.Action(i)),LA1.Object(LA1.Action(j)));
 Endif
 End For
End Crossover

Fig 3. Pseudo code of crossover operator

Mutation operator: For executing this operator, we
can use different method which are suitable for work
with permutations. For example in swap mutation,
two actions (gens) from one automata
(chromosome) are selected randomly and replaced
with each other.The pseudo code of this operator is
represented in figure 4.

Procedure Mutation (LA)
 i = Random *n; j = Random *n;

Swap(LA.Object(LA.Action(i)),LA.Object(LA.Action(j)));
End Mutation

Fig 4. Pseudo code of mutation operator.

Penalty and Reward operator
In each chromosome, evaluating the fitness rate of a
gen which is selected randomaly, penalty or reward
is given to that gen. as a result of giving penalty or
reward, the depth of gen changes. Figure 5 shows
the pseudo code of reward operator.

Procedure Reward(LA, u)
 If (LA.State(u)-1) mod N <> 0 then
 Dec (LA.State(u));
 End If
End Reward

Fig 5. Pseudo code of reward operator.

Pseudo code of penalty operator is shown in figure6.
The manner of join move occurs in two different
ways and is shown below.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 107

a) The join be in a state except boundary state:
giving penalty reduces the certainty of the join.

b) The join be in a boundary state: in this manner,
we find a join from query, so that if we change
place of two join in execution plan, the cost will
decrease more. In this case, if found join be in a
boundary state, the place of two joins is
replaced, otherwise, at first, the determined join
is transmitted into its boundary state, and then
replacement takes place.

Procedure Penalize(LA, u)
 repeat
 For U = 1 to n do
 If (LA.State(U)) mod N <> 0 then
Inc(LA.State(U));
 End If
 End for
 Until at least one join appears in the boundary state
 bestcost = ∞ ;
 for U = 1 to n do
 Create QEP LA′ from LA by swapping u and U
 If costi(LA′) < bestError then
 bestcost = costi(LA′);
 bestjoin = U;
 End If
 End for
 LA.State(bestjoin) = LA.Action(bestjoin)*N;
 LA.State(u) = LA.Action(u)*N;
 Swap(LA.State(u),LA.State(bestjoin));
End Penalize

Fig 6. Pseudo code of penalty operator
The Pseudo code of hybrid algorithm is shown in
figure 7

Function JoinOrdering(Query)
 //n=Number of Joins
 Create the initial population LA1 … LAn;
 EvalFitness();
 While (Not (StopCondition)) do
 NewLA1=NewLA2= LA with minimum
Value of Cost;
 For i = 2 to n do
 Select LA1 ; Select LA2 ;
 If (Random > 0.9) then Crossover (
LA1, LA2);End If
 If (Random > 0.6) then
 Mutation (LA1); Mutation (LA2);
 End If
 NewLAi+1 = LA1; NewLAi+2 = LA2 ;
i=i+2;
 End For
 For i = 0 to n do
 LAi = NewLAi; u = Random *n;
 If (costu(LAi) <MeanCost) then
Reward(LAi , u);
 Else Penalize(LAi , u);
 End If
 End For
 EvalFitness();
 End While
End JoinOrdering

Fig 7. The Pseudo code of hybrid algorithm for solving join
ordering problem in database queries.

4 Experiment results

In this part, experiment results done by learning
automata (LA) and genetic (GA) and hybrid
(GALA) algorithms are presented. The results show
that hybrid algorithm has dominance over the
methods of learning automata and genetic algorithm.
Figure 8 show the results of hybrid algorithm based
on Tsetlin automata in comparison with learning
automata and genetic algorithm. In the following
diagrams, the vertical axis shows the average cost of
executing plans that resulted by each algorithm and
horizontal axis shows the number of joins in queries.
The experiment results show that hybrid algorithm
has better and suitable results in comparison with
genetic algorithm, and the cost of executing plans
with hybrid algorithm for a definite number of joins
is less than genetic algorithm, but the results of
hybrid algorithm based on Tsetlin automata in
comparison with learning automata don’t have
appropriate improvement, and mostly results of
these two algorithm are close to each other and
sometimes hybrid algorithm had better efficiency.
figures 9, 10 and 11 respectively show the results of
hybrid algorithm based on Krinisky, Krylov and
Ommen automata in comparison with genetic
algorithm and learning automata. The experiments
show that the dominance of hybrid algorithm over
other methods, in other words the cost of execution
plans obtained by hybrid algorithm based on
Krinsky and Krylov and Oomen automata has been
less than other algorithms in all states.
Comparing the results of hybrid algorithms with
each other show the dominance of hybrid algorithm
based on Krinsky automata over other. This matter
is shown figure 12. So, we can say that from among
algorithms, hybrid algorithm based on Krinsky is the
most suitable way for solving join ordering problem
in database queries.
5 Conclusion
In this paper, a hybrid evolutionary algorithm has
been proposed for solving the optimization of join
ordering problem in database queries. This
algorithm uses two methods of genetic algorithm
and learning automata synchronically for searching
the states space of problem. It has been showed in
this paper that by synchronic use of learning
automata and genetic algorithms in searching
process, the speed of finding an answer has been
accelerated and prevented from getting stuck in local
minimums. The results of experiments show that
hybrid algorithm has dominance over the methods of
genetic algorithm and learning automata.

References:

[1] E.F. Codd, "A relational model of data for large shared data banks",
CACM, 13(6): pages 377-387, 1970.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 108

[2] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, "Access path selection in a relational database
management system", In Proc. Of the ACM SIGMOD Conf. on
management of Data, pages 23-34, Boston, USA, 1979.

[3] K. Bennet, M. C. Ferris, and Y. E. Ioannidis, "A genetic algorithm
for database query optimization", In Proc. Of the Fourth Intl. Conf.
on Genetic Algorithms, pages 400-407, San Diego, USA, 1991.

[4] T. Ibaraki and T. Kameda, "Optimal nesting for computing N-
relational joins", ACM Trans. on Database Systems, 9(3): pages
482-502, 1984.

[5] A. Swami and A. Gupta, "Optimization of large join queries", In
Proc. Of the ACM SIGMOD Conf. on Management of Data, pages
8-17, Chicago, IL, USA, 1988.

[6] A.Swami, "Optimization of large join queries: Combining heuristics
and combinational techniques", In Proc. Of the ACM SIGMOD
Conf. on Management of Data, pages 367-376, Portland, OR, USA,
1989.

[7] M. Steinbrunn, G. Moerkotte, and A. Kemper, "Heuristic and
randomized optimization for the join ordering problem", VLDB
Journal: Very Large Data Bases, 6(3): pages 191-208, 1997.

[8] R. Lanzelotte, P. Valduriez, and M. Zait, "On the effectiveness of
optimization search strategies for parallel execution spaces", In
Proc. Of the Conf. on Very Large Data Bases (VLDB), pages 493-
504, Dublin, Ireland, 1993.

[9] M. M. Astrahan et al, "System R: A relational approach to data
management." ACM Trans. on Database Systems, 1(2) pages 97-
137, 1976.

[10] R. Krishnamurthy, H. Boral, and C. Zaniolo, "Optimization of
nonrecursive queries.", In Proc. of the Conf. on Very Large Data
Bases (VLDB), pages 128-137, Kyoto, Japan, 1986.

[11] A. Swami and B. Iyer, "A polynomial time algorithm for optimizing
join queries.", In Proc. IEEE Conf. on Data Engineering, pages 345-
354, Vienna, Austria, 1993.

[12] Y. E. Ioannidis and Y. C. Kang, "Randomized algorithms for
optimizing large join queries", In Proc. Of the ACM SIGMOD
Conf. on Management of Data, pages 312-321, Atlantic City, USA,
1990.

[13] Y. Ioannidis and E. Wong, "Query optimization by simulated
annealing", In Proc. Of ACM SIGMOD Conf. on the Management
of Data, pages 9-22, San Francisco, CA, 1987.

[14] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by
simulated annealing", Science, 220(4598): pages 671-680, 1983.

[15] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten, "Fast,
randomized join-order selection why use transformations", In Proc.
Of the 20th Int. Conf. on Very Large Data Bases (VLDB), pages 85-
95, Santiago, Chile, 1994.

[16] M. Stillger and M. Spiliopoulou, "Genetic programming in database
query optimization", In Proc. Of the First Annual Conf. on Genetic
Programming, pages 388-393, Stanford University, CA, USA, 1996.

[17] V. Muntes-Mulero, J. Aguilar-Saborit, C. Zuzarte, and J.-L. Larriba-
Pey, "Cgo: a sound genetic optimizer for cyclic query graphs", In
Proc. Of ICCS 2006, pages156-163, Reading, Springer-Verlag, UK,
2006.

[18] H. Beigy and M. R. Meybodi, "Randomized Las Vegas Algorithm
for Graph Isomorphism”, Proceedings of Third International
Conference on Intelligent Data Engineering and Automated
Learning, Manchester, UK, Aug.12-14, 2002.

[19] Y. Wang and, K. "Fan Genetic-Basic Search for Error-Correcting
Graph Isomorphism", IEEE Transaction on Systems, Man. And
Cybernetics-Par`t B: Cybernetics, Vol. 27, No. 4, August 1997.

0
10000
20000
30000
40000
50000
60000
70000

10 20 30 40 50 60 70 80 90 100
Number of Join Operator

C
os

t o
f Q

ue
ry

 E
xe

cu
tio

n

Automata GA GALA

Fig 8: Comparison of averaged cost obtained from hybrid
algoritm and learning automata based on Tsetline and genetic
algorithm.

0
10000
20000
30000
40000
50000
60000
70000

10 20 30 40 50 60 70 80 90 100
Number of Join Operator

C
os

t o
f Q

ue
ry

 E
xe

cu
tio

n

Automata GA GALA

Fig 9: Comparison of averaged cost obtained from hybrid
algoritm and learning automata based on Krinsky and genetic
algorithm.

0
10000
20000
30000
40000
50000
60000
70000

10 20 30 40 50 60 70 80 90 100
Number of Join Operator

C
os

t o
f Q

ue
ry

 E
xe

cu
tio

n

Automata GA GALA

Fig 10: Comparison of averaged cost obtained from hybrid algoritm and

learning automata based on Krylov and genetic algorithm.

0
10000
20000
30000
40000
50000
60000
70000

10 20 30 40 50 60 70 80 90 100
Number of Join Operator

C
os

t o
f Q

ue
ry

 E
xe

cu
tio

n

Automata GA GALA

Fig 11: Comparison of averaged cost obtained from hybrid

algoritm and learning automata based on Oomen and genetic
algorithm.

0
10000
20000
30000
40000
50000
60000
70000

10 20 30 40 50 60 70 80 90 100
Number of Join Operator

C
os

t o
f Q

ue
ry

 E
xe

cu
tio

n

GALA - Krinisky GALA - Krylov
GALA - Oomen GALA - Tsetlin

Fig 12: Comparison of averaged cost obtained from hybrid

algoritms based on different Automata.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 109

