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Abstract: - Optimizing the database queries is one of hard research problems. Exhaustive search techniques 
like dynamic programming is suitable for queries with a few relations, but by increasing the number of  
relations in query, much use of memory and processing is needed, and the use of these methods is not suitable, 
so we have to use random and evolutionary methods. The use of evolutionary methods, because of their 
efficiency and strength, has been changed in to a suitable research area in the field of optimizing the database 
queries. In this paper, a hybrid evolutionary algorithm has been proposed for solving the optimization of Join 
ordering problem in database queries. This algorithm uses two methods of genetic algorithm and learning 
automata synchronically for searching the states space of problem. It has been showed in this paper that by 
synchronic use of learning automata and genetic algorithms in searching process, the speed of finding an 
answer has been accelerated and prevented from getting stuck in local minimums. The results of experiments 
show that hybrid algorithm has dominance over the methods of genetic algorithm and learning automata. 
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1   Introduction 
Relational data model has been introduced by Codd 
[1] and in recent years, relational database systems 
have been recognized as a standard in scientific and 
commercial applications. Work on join operator, 
because of its high evaluation cost, is the primary 
purpose of relational query optimizers. If queries be 
in the conversational manner, they will include 
fewer relations and we can do the optimization of 
these expressions by an exhaustive search. However, 
in case the number of relations is more than five or 
six relations, exhaustive search techniques will bear 
high cost regarding the memory and time. Queries 
with lots of joins are seen in new systems like 
deductive database management systems, expert 
systems, engineering database management systems 
(CAD/CAM), Decision Support Systems, Data 
mining, and scientific database management systems 
and etc. Whatever the reason, database management 
systems need the use of query optimizing techniques 
with low cost in order to counteract with such 
complicated queries. A group of algorithms which 
are searching for suitable order for performing the 
join ordering problem are exact algorithms that 
search all of state space and sometimes they reduce 
this space by heuristic methods [7]. One of these 
algorithms is dynamic programming method which 
at first introduced by Selinger et al [2, 9] for 

optimizing the join ordering in System-R. The most 
important disadvantage of this algorithm is that 
increasing the number of relations in queries needs 
much use of memory and processor. We can imply 
other exact algorithms like minimum selectivity 
algorithm [7], KBZ algorithm [10] and AB 
algorithm [11].Other algorithms named random 
algorithms have been introduced for showing the 
inability of exact algorithms versus large queries. 
Introduced algorithms in this field are iterative 
improvement [5, 6, 12], simulated annealing [5, 12, 
13, 14], two-phase optimization [12], toured 
simulated annealing [8] and random sampling 
[15].According the nature of evolutionary 
algorithms and considering this matter that they are 
resistant and efficient in most of the cases and by 
considering the works done in this field, the most 
suitable choice for solving this problem is use of 
evolutionary algorithms. The first work in 
optimizing the join ordering problem has been done 
by Bennet et al [3]. In general, the algorithm used by 
them bears low cost in comparison with dynamic 
programming algorithm used for System-R. Other 
features of this algorithm are the capability to use in 
parallel architecture. Some other works have been 
done by Steinbrunn et al [7] that they have used 
different coding methods and genetic operators. 
Another sample of evolutionary algorithms used for 
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solving the join ordering problems is genetic 
programming which is introduced by Stillger et al 
[16]. CGO genetic optimizer has also been 
introduced by Mulero et al [17]. 
In this paper, a hybrid evolutionary algorithm has 
been proposed for solving the optimization of Join 
ordering problem in database queries. This 
algorithm uses two methods of genetic algorithm 
and learning automata synchronically for searching 
the states space of problem. It has been showed in 
this paper that by synchronic use of learning 
automata and genetic algorithms in searching 
process, the speed of finding an answer has been 
accelerated and prevented from getting stuck in local 
minimums. The results of experiments show that 
hybrid algorithm has dominance over the methods of 
genetic algorithm and learning automata. The paper 
has been organized as follows: The second part 
defines join ordering problem in database queries. 
Part three provides brief account of learning 
automata and genetic algorithms. Part 4 explains the 
proposed hybrid algorithm and on basis of data 
analysis, part 5 provides an account of analysis, in 
other words it deals with results. The conclusion and 
implication will be presented in part 6.  
2 The definition of problem 
Query optimization is an action that during which an 
efficient query execution plan (qep) is provided and 
is one of the basic stages in query processing. At this 
stage, database management system selects the best 
plan from among execution plans, in a way that 
query execution bears the low cost, especially the 
cost of input/output operations. Optimizer's input is 
the internal form of query that has been entered into 
database management system by user. The general 
purpose of query optimizing is the selection of the 
most efficient execution plan for achieving the 
suitable data and responding to data queries. In the 
other words, in case, we show the all  of allocated 
execution plans for responding to the query with S 
set, each member qep that belongs to S set has 
cost(qep) that this cost includes the time of 
processing and input/output. The purpose of each 
optimization algorithm is finding a member like 
qep0 which belongs to S set, so that [3]: 

cost(qep)Sqepmin)0cost(qep ∈=
 

The execution plan for responding to query is the 
sequel of algebra relational operators applied on the 
database relations, and produces the necessary 
response to that query. Among the present relational 
operators, processing and optimizing the join 
operators which are displayed by symbol ∞ are 
difficult operations. Basically, join operator 
considers two relations as input and combines their 

tuples one by one on the basis of a definite criterion 
and produce a new relation as output. Since the join 
operator has associative and commutative features, 
the number of execution plans for responding to a 
query increases exponentially when the number of 
joins among relations increases. Moreover, database 
management system usually supports different 
methods of implementing a join operator for join 
processing and various kinds of indexes for 
achieving to relations, so that, these cases increase 
the necessary choices for responding to a query. 
Although all of the present execution plans for 
responding to a definite query, have similar outputs, 
but while generated inter-relation's cardinality aren't 
similar, thus generated execution plans have 
different costs. Thus selecting of suitable ordering 
for join execution affects on total cost. The problem 
of query optimizing which is called the problem of 
selecting suitable ordering for join operators 
execution, is NP-hard  problem [4]. 
3 Learning automata and genetic 

algorithms 
Learning automata approach for learning involves 
determination of an optimal action from a set of 
allowable actions. It selects an action from its finite 
set of actions. The selected action serves as input to 
the environment which in turn emits a stochastic 
response from allowable responses. Statistically, 
environment response is dependent to automata 
action. Environment term includes a set of all 
external conditions and their effects on automata 
operation. For more information about learning 
automata, you can refer [18]. Learning automata 
have various applications such as: routing in 
communicative networks, image data compression, 
pattern recognition, processes scheduling  in 
computer networks, queuing theory, accessing 
control on non-synchronic transmitting networks, 
assisting the instruction of neural networks, object 
partitioning and finding optimal structure for neural 
networks. For the query with n join operator, there 
are n! Execution plans. If we use learning automata 
for finding optimal execution plan, automata will 
have n! Actions, the large number of actions reduces 
speed of convergence in automata. For this reason, 
object migration automata proposed by Oomen and 
Ma [18]. Genetic algorithms operate on basis of 
evolution idea and search optimal solution from 
among a large number of potential solutions in 
populations. In each generation, the best of them is 
selected and after mating, produces new childes. In 
this process, suitable people will remain with greater 
possibility for next generation [9].  
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Proposed hybrid algorithm for solving 
join ordering problem 
by combining genetic algorithms  and learning 
automata  and integrating gen, chromosome, actions 
and depth  concepts, historical track of problem 
solving evolution is extracted efficiency and used in 
the search process. The major feature of hybrid 
algorithm is it's resistance versus nominal changes 
of responses. In other words, there is a flexible 
balance between efficiency of genetic algorithm, 
resistance of learning automata in hybrid algorithm. 
Generation, penalty and reward are some of features 
of hybrid algorithm. It has been explained in the 
following basic parameters of this algorithm. 
Gen and Chromosome: in proposed algorithm, 
unlike classical genetic algorithm, binary coding or 
natural permutation representations aren't used for 
chromosomes. Each chromosome is represented by 
learning automata of object migration kind, so that 
each of gens in chromosome is attributed to one of 
automata actions, and is placed in a definite depth of 
that action. In these automata,  }, ... , α, α{αα k21=  is set 
of allowed actions of automata. These automata 
have k actions (the number of actions of these 
automata equals with the number of join operators). 
If number u join from given query is placed in the m 
number action, in this case, number u join will be 
mth join of query will be 
executed.  }, ... , , { KNφφφφ 21= Is set of states and N is 
memory depth for automata. The set of automata 
states are divided to k 
subsets  }, ... , , { Nφφφ 21 ,  }, ... , , { NNN 221 φφφ ++ , …, 

 }, ... , , { KNNKNK φφφ 2)1(1)1( +−+− , and join operators are 
classified on the basis of  this matter that in which 
state they are. If number u join of query is placed in 
the set },...,,{ 1)2(1)1( jNNjNj φφφ +−+− , in this case, 
number u join will be nth join that is executed. In a 
set of states of j action, 1)1( +− Njφ  is called internal state 
and 

jNφ

 is called boundary state. The join which has 

located in  1)1( +− Njφ  is called more certainty and the 
join which has located in jNφ  is called less certainty. 
The join state is changed as a result of giving reward 
or penalty, and after producing several automata 
generations with genetic algorithm, we can achieve 
optimal permutation, and this is the best choice for 
the problem. If a join is located in boundary state of 
an action, giving penalty causes a change in the 
action that join is located on it, and causes new 
permutations. Now consider the following query:  

(A∞C) and (B∞C) and (C∞D) and (D∞E) 
Each join operator has  a  clause for joining that is 
omitted for the simplicity of display, determines 

which tuples of joned relations  emerge in the result 
relation. The above query is represented as graph in 
figure1. Capital letters are used for showing 
relations and Pi is used for show join operator.  
 

 
 
 
 
 
 
 
 
We consider a set of join operators like p1, p2, p3, 
p4 to show permutation of join operator executions 
with object migration automata, based on Tsetlin 
automata. This automata has four actions 
{a1,a2,a3,a4} (the same number of query joins) and 
depth 5. A set of states like {1,6,11,16,21,26} are 
internal status and a set of states like 
{5,10,15,20,25,30} are boundary states of learning 
automata. At first, each of query joins is in the 
boundary state of related action. In hybrid algorithm, 
each of chromosome's gen equals with one automata 
action, so we can use these two words instead of 
each other. Learning automata (chromosome) has 
four actions (gen), and each action has five internal 
states. Suppose in the first permutation, the order of 
join operator executions will be join 3, join 2, join 1 
and join 4 respectively. The way of representing 
execution order by object migration automata is 
shown in figure 2. This matter is done on the basis 
of Tsetlin automata. At first, each of these joins is in 
the boundary state of related action. 

 
Fig 2. Display of joins permutation (p3, p2, p1, p4) by learning 
automata based on Tsetlin automata connections. 
 
Fitness function: In genetic algorithms, fitness 
function is the feature for surviving chromosomes. 
The purpose of searching the optimized order of 
query joins is finding permutation of join operators, 
so that total cost of query execution is minimized in 
this permutation. One important point in computing 
fitness function is the number of references to the 

P1 E 

P4 P3 

P2 

C 
A

D 

B 

Fig 1. An example of a query graph 
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disc. So, we can define the fitness function of F for 
an execution plan like qep as follows: 

disk  toreferences ofnumber  The
1)( =qepF  

For computing the number of references to disc (the 
cost) of an execution plan, consider execution plan 
as a processing tree. The cost of each node as 
recursive form (down to up and right to left) is 
computing by adding the total number of achieved 
costs of the two child nodes, and needed cost for  
joining them in order to achieve the final result [7]. 
For example, we consider join R1∞R2: 

 
In this case, the cost of evaluation equals to 
following amounts: 

)21()2()1( RRCRCRCtotalC ∞++=  

In which, C(Rk) is the cost of achieving to child 
node, and is computed is follows: 

 
In a special manner, if R1 and R2 are both the base 
relations, the cost Ctotal equals with )( 21 RRC ∞  and 
according to this matter that we have used nested 
loops for join operator implementation, so the 
computation cost of join operator will be same as 

21
)21( RbRbRRC +=∞  and  

kRb is numbers of blocks 

of  Rk  relation 
Operators: Considering this that in hybrid 
algorithm, each chromosome is represented as 
learning automata; crossover and mutation operators 
are different from similar operators in simple genetic 
algorithms. 
Selection operator: The selection used for this 
algorithm is roulette wheel. 
Crossover Operator: In this operator, two parent 
chromosomes are selected and two gens i and j are 
selected randomly in one of the two parent 
chromosomes. Then these genes are selected in 
another parent. A set of gens with numbers between 
i and j are called crossover set. Then gens which 
have same numbers replace with each other in two 
crossover set ( for example, i gen from first 
crossover set replaces with the i gen from the second 
crossover set. i+1 gen from first crossover set 
replaces with the i+1 gen from the second crossover 
set, and so on). Two new chromosomes are 
produced in this way which are so-called the 
children of two automata parents. In continue, the 
pseudo code of this operator is represented in figure 
3. Since, n chromosome (automata) is used in this 

algorithm, and each automata has its own special 
characteristics (states, action and object like each 
action), we represent these features by automata 
name and point separator for more readability of 
pseudo code.  
For example, for showing the join state of u from i 
automata, LAi.State(u)  has been used. In the 
aforementioned algorithm, costi( LA1) is the cost ( 
the number of reference to disc) for joining the ith 
action of first learning automata. 
 

Procedure Crossover ( LA1, LA2 ) 
 Generate two random numbers r1 and r2 between 1 to n 
 r1 = Random *n; r2 = Random *n; 
 r1 = Min(r1, r2 ), r2 = Max(r1, r2 ) 
 For i = r1 to r2 do 
  If (costi( LA1) < costi( LA2) ) then 
    j = Action of LA2 where 
    LA2.Object(LA2.Action( j )) =LA1.Object(LA1.Action( i ));    
Swap(LA2.Object(LA2.Action(i)),LA2.Object(LA2.Action(j))); 
  Else 
    j = Action of LA1 where 
    LA1.Object(LA1.Action( j ))=LA2.Object(LA2.Action( i )); 
Swap(LA1.Object(LA1.Action(i)),LA1.Object(LA1.Action(j))); 
  Endif 
 End For 
End Crossover 

Fig 3. Pseudo code of crossover operator 
 

Mutation operator: For executing this operator, we 
can use different method which are suitable for work 
with permutations. For example in swap mutation, 
two actions (gens) from one automata 
(chromosome) are selected randomly and replaced 
with each other.The pseudo code of this operator is 
represented in figure 4. 

Procedure Mutation (LA) 
       i = Random *n; j = Random *n; 
       
Swap(LA.Object(LA.Action(i)),LA.Object(LA.Action(j))); 
End Mutation 

Fig 4.  Pseudo code of mutation operator. 
 
Penalty and Reward operator  
In each chromosome, evaluating the fitness rate of a 
gen which is selected randomaly, penalty or reward 
is given to that gen. as a result of giving penalty or 
reward, the depth of gen changes. Figure 5 shows 
the pseudo code of reward operator. 

Procedure Reward( LA, u ) 
       If (LA.State(u)-1) mod N <> 0 then 
            Dec (LA.State(u)); 
       End If 
End Reward 

Fig 5.  Pseudo code of reward operator. 
 
Pseudo code of penalty operator is shown in figure6. 
The manner of join move occurs in two different 
ways and is shown below. 
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a) The join be in a state except boundary state: 
giving penalty reduces the certainty of the join.  

b) The join be in a boundary state: in this manner, 
we find a join from query, so that if we change 
place of two join in execution plan, the cost will 
decrease more. In this case, if found join be in a 
boundary state, the place of two joins is 
replaced, otherwise, at first, the determined join 
is transmitted into its boundary state, and then 
replacement takes place. 

Procedure Penalize( LA, u ) 
   repeat 
     For U = 1 to n do 
        If (LA.State(U)) mod N <> 0 then  
Inc(LA.State(U)); 
        End If 
     End for 
   Until at least one join appears in the boundary state 
   bestcost = ∞ ; 
   for U = 1 to n do 
       Create QEP  LA′ from LA by swapping u and U 
       If   costi( LA′) < bestError then 
            bestcost = costi( LA′); 
            bestjoin = U; 
       End If 
   End for 
   LA.State(bestjoin) = LA.Action( bestjoin)*N; 
   LA.State(u) = LA.Action(u)*N; 
   Swap(LA.State(u),LA.State(bestjoin)); 
End Penalize 

Fig 6.  Pseudo code of penalty operator 
The Pseudo code of hybrid algorithm is shown in 
figure 7 

Function JoinOrdering(Query) 
  //n=Number of Joins 
  Create the initial population LA1 … LAn; 
  EvalFitness(); 
  While ( Not (StopCondition)) do 
    NewLA1=NewLA2= LA with minimum 
Value of Cost; 
    For i = 2 to n do 
      Select LA1 ; Select LA2 ; 
     If ( Random > 0.9 ) then Crossover ( 
LA1, LA2 );End If 
     If (Random > 0.6 ) then 
         Mutation ( LA1 ); Mutation ( LA2 );  
     End If 
      NewLAi+1 = LA1; NewLAi+2 = LA2 ;  
i=i+2; 
    End For 
    For i = 0 to n do 
      LAi = NewLAi;  u = Random *n; 
      If (costu( LAi) <MeanCost ) then 
Reward(LAi , u ); 
      Else Penalize(LAi , u ); 
      End If 
    End For 
    EvalFitness(); 
  End While 
End JoinOrdering 

Fig 7. The Pseudo code of hybrid algorithm for solving join 
ordering problem in database queries. 
 

4 Experiment results 

In this part, experiment results done by learning 
automata (LA) and genetic (GA) and hybrid 
(GALA) algorithms are presented. The results show 
that hybrid algorithm has dominance over the 
methods of learning automata and genetic algorithm.   
Figure 8 show the results of hybrid algorithm based 
on Tsetlin automata in comparison with learning 
automata and genetic algorithm. In the following 
diagrams, the vertical axis shows the average cost of 
executing plans that resulted by each algorithm and 
horizontal axis shows the number of joins in queries. 
The experiment results show that hybrid algorithm 
has better and suitable results in comparison with 
genetic algorithm, and the cost of executing plans 
with hybrid algorithm for a definite number of joins 
is less than genetic algorithm, but the results of 
hybrid algorithm based on Tsetlin automata in 
comparison with learning automata don’t have 
appropriate improvement, and mostly results of 
these two algorithm are close to each other and 
sometimes hybrid algorithm had better efficiency. 
figures 9, 10 and 11 respectively show the results of 
hybrid algorithm based on Krinisky, Krylov and 
Ommen automata in comparison with genetic 
algorithm and learning automata. The experiments 
show that the dominance of hybrid algorithm over 
other methods, in other words the cost of execution 
plans obtained by hybrid algorithm based on 
Krinsky and Krylov and Oomen automata has been 
less than other algorithms in all states. 
Comparing the results of hybrid algorithms with 
each other show the dominance of hybrid algorithm 
based on Krinsky automata over other. This matter 
is shown figure 12. So, we can say that from among 
algorithms, hybrid algorithm based on Krinsky is the 
most suitable way for solving join ordering problem 
in database queries. 
5 Conclusion 
In this paper, a hybrid evolutionary algorithm has 
been proposed for solving the optimization of join 
ordering problem in database queries. This 
algorithm uses two methods of genetic algorithm 
and learning automata synchronically for searching 
the states space of problem. It has been showed in 
this paper that by synchronic use of learning 
automata and genetic algorithms in searching 
process, the speed of finding an answer has been 
accelerated and prevented from getting stuck in local 
minimums. The results of experiments show that 
hybrid algorithm has dominance over the methods of 
genetic algorithm and learning automata. 
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Fig 8: Comparison of averaged cost obtained from hybrid 
algoritm and learning automata based on Tsetline and genetic 
algorithm. 
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Fig 9: Comparison of averaged cost obtained from hybrid 
algoritm and learning automata based on Krinsky and genetic 
algorithm. 
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Fig 10: Comparison of averaged cost obtained from hybrid algoritm and 

learning automata based on Krylov and genetic algorithm. 
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Fig 11: Comparison of averaged cost obtained from hybrid 

algoritm and learning automata based on Oomen and genetic 
algorithm. 
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Fig 12: Comparison of averaged cost obtained from hybrid 

algoritms based on different Automata. 
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