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Abstract: We examined the use of data from low resolution (MODIS) and almost high resolution (ASTER) 

sensors for crop acreage estimation in south of Iran (Marvdasht county). The feasibility of these data for the 

task was determined. The results are based on satellite and ground truth data. We show that MODIS images 

provide reasonable accuracy for crop area estimation. Because of sub-pixel heterogeneity using the combined 

dataset (high and low resolution) retrieval accuracy is better than with high temporal or high resolution 

images. So we examined the potential of sub-pixel classification for regional crop area estimation using time 

series of NDVI of MODIS images instead of MVC-NDVI in this paper. Support vector machine approach 

used for classification high resolution image and Neural Network model was investigated and results in area 

fraction images (AFIs). The algorithm was trained with both of reference data and in situ data which collected 

by GPS in Marvdasht District. For the major classes (winter wheat, maize and other crops) the obtained 

acreage estimates showed good agreement with the true values (R
2
≈80%). The method seems attractive for 

wide-scale, regional area estimation in the countries that appropriate data are not available. 

 

Key-Words: Mixed pixel; Support vector machine; Neural Network; Area fraction images; MODIS time 

series. 

 

1   Introduction 
It is important to be able to estimate the area of an 

agricultural field to manage agricultural production 

system. In order to operate effectively, the crop area 

estimation has to be automated. Since Iran is very 

vast, this task is too large to be carried out by 

investigators on site. A further complication is that 

on many of parcels that are in use several crops are 

grown in succession each year, making a regular 

observation necessary. To cope with these problems, 

we need an automated system based on satellite 

remote sensing to support investigators in their task. 

Since each remotely sensed image covers a large 

region, many observations can be made in a 

relatively cost-effective way. Furthermore, the 

observation can be performed regularly because the 

satellite passes over the same area on a frequent 

basis. It is because of these properties that an 

automated system based on satellite remote sensing 

is ideally suited for crop area estimation. 

On the other hand, crop monitoring at regional or 

national level requires synoptic methods. It is not 

practical to use detailed methods, as they are field 

data demanding. Remote sensing, due to its high 

temporal resolution data (e.g. NOAA-AVHRR and 

Terra-MODIS), could provide synoptic 

observations. But this data has low spatial resolution 

and the recorded radiometry is a mixed signal. The 

mixed pixel problem is a strong limitation for the 

use of low-resolution images in crop monitoring. 

This is especially a problem when agricultural farms 

are scattered or small. In order to improve the utility 

of these images, mixed signals must be 

disaggregated to the level of individual crops (land 

covers). 
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1.1 The mixed pixel problem 
In every remotely sensed image, a considerable 

number of mixed pixels are present. A mixed pixel 

is a picture element representing an area occupied 

by more than one ground cover type. Basically, 

there are two situations in which mixed pixels occur. 

The first case concerns the pixels that are located at 

the edges of large objects like agricultural fields, for 

instance. The second case arises when objects are 

imaged that are relatively small compared to the 

spatial resolution of the scanner. This can be long 

linear features such as rivers or highways, but also 

objects that are small in both dimensions such as 

farms or ponds, or even bushes in the sparsely 

vegetated semi-arid rangelands.  

For a given scanner, the number of mixed pixels 

greatly depends on the landscape that is imaged. 

Irons et al. [5] reported proportions of probable 

mixed pixels in TM-images ranging from 29.6% for 

the category water to 68.3% for grass patches, while 

Schoenmakers [4] claimed that in some 

Mediterranean countries (also same condition in 

Iran), where the average field size is small, the 

proportion of mixed pixels can easily be as high as 

30%. These figures indicate that mixed pixels have a 

significant influence on the information that can be 

derived. Classification of mixed pixels leads to 

errors that make the subsequent area estimation 

inaccurate. These errors are caused by the premise 

of classification that all pixels are pure, i.e. 

consisting of a single ground cover type, while in 

fact they are not. The Spectral confusion caused by 

mixing of ground cover types is outlined in figure 1. 

 
Fig 1: Spectral confusion caused by mixing of 

ground cover types. 
 

The mixed pixel problem is not solved simply by 

increasing the spatial resolution. In general, the 

proportion of mixed pixels decreases as the spatial 

resolution becomes finer, for the smaller pixel size 

allows more pure pixels to be fit within the object 

boundaries. In some cases, however, the proportion 

of mixed pixels can actually increase because the 

finer detail resolves features not recorded before, 

thus introducing new spectral classes (Campbell 

[3]). For example, the image of a forested area, 

which seemed uniform at coarse resolution, may 

display individual trees of different species 

interspersed with open spaces at finer resolution 

(Woodcock and Strahler [6]). But even if the 

spectral classes remain the same and the proportion 

of mixed pixels decreases, the classification results 

can still deteriorate (Markham and Townshend [8], 

Irons et al. [5]). 

 The main reason for this effect is that at finer 

resolutions the within-class variation increases as 

local differences in humidity, elevation, 

illumination, etc. become more apparent. Another 

reason is that the increase in spatial resolution 

usually is achieved at the expense of the spectral or 

radiometric resolution, because the reduction in 

received energy due to a smaller IFOV must be 

compensated for, e.g. by broadening the spectral 

band at which the reflectance is measured. A further 

disadvantage of fine spatial resolution is that the 

number of pixels can become very large, which adds 

to the costs of processing. 

 

2 Study area and DATA 
Because of its cover type of the large majority of 

agricultural fields, Marvdasht region located in Fars 

province in south of Iran was selected as test zone. 

Some random fields were selected and their 

positions were specified using GPS. To validate the 

use of linear mixture model with remotely sensed 

data, an ASTER image of Marvdasht was used to 

generate a land use map of the study area as 

reference data set (Figure 2). 

 
Fig 2: The study area in south of Iran. 

 

The following image data were used to carry out this 

research: 

 

• One ASTER image (06 Jul 2005). 

 

• Selected MODIS time series images, 

February-05 till July-05. 
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• A classified ASTER image (crop map). 

 

• MODIS time series NDVI and simple ratio 

index for ASTER image. 

 

Earth observation data needs to undergo some 

correction procedures before it can be used for 

processing and analysis. This is due to the 

distortions and degradations induced to the data 

during image acquisition. These correction 

procedures are generally termed preprocessing and 

can be divided into two categories; geometric 

corrections and radiometric corrections. For 

geometric correction, the current analysis started 

with the re-projection of images to the same co-

ordinate system as used for the GPS data (UTM, 

Zone 39N-250 m (MODIS)). Radiometric 

corrections are required because of the factors such 

as changes in scene illumination, atmospheric 

conditions, viewing geometry and instrument 

response characteristics which influence the 

radiance measured by any given system over a given 

object [14]. Haze and sun elevation correction are 

applied on the data used for this study. 

The Normalized Difference Vegetation Index 

(NDVI) is a commonly used, space-observed 

measure for the amount of green vegetation. 

Selected MODIS time series images (35 images) 

converted to NDVI images. These images were 

considered completely free of missing values (cloud, 

snow, other noise). To have just the crop land area, 

ASTER image was masked by the ratio of Band 3 to 

Band 2 of the image. The mask defined by threshold 

which originates from in situ data. Simple ratio 

index for ASTER image used to produce crop map 

is shown in figure 3. 

 

 
 

Fig 3: Simple ratio index for ASTER image 

(Marvdasht County). 

ASTER image was classified by two common 

classification methods: Maximum Likelihood and 

Support vector machine for classification the 

ASTER image and comprise the results (Table 1). 

 

Method 

Overall 

Accuracy 

(%) 

Kappa 

Coefficient 

(%) 

Maximum 

Likelihood 
90.2 88 

Support vector 

machine 
92.3 89.7 

Table 1: Accuracy of the classification methods 

 Therefore, support vector machine classification 

with radial basis function kernel type and gamma in 

kernel function equal to 0.167 and penalty parameter 

equal to 0.93 was selected to produce crop map for 

this study. Classification probability threshold set as 

0.95 for classification entire image for all classes. 

The reference crop map which produced by 

classifying ASTER image containing four main 

classes of wheat (green), barley (blue) ,maize (red) 

and orchards (cyan) and is shown in figure 4. 

 
Fig 4: Area fraction image produced by crop map. 

 

The reference crop map which produced by 

classifying ASTER image was not directly 

compatible with the low resolution NDVI-images. 

Therefore, it was transformed into a set of area 

fraction images (AFIs), one for each of the classes 

(Verbeiren, S. et al. [13]). The procedure for the 

AFI-creation is outlined in figure 5. 

 
 

Fig 5: Creation of area fraction images by crop map. 
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 These AFIs have the same 250 m resolution as the 

MODIS images and they give for each pixel the area 

fraction occupied by the considered classes (the 

fractions sum up to 1 per pixel). First, a 250*250 m
2
 

grid was created with the same spatial characteristics 

(projection, resolution, and framing) as the NDVI-

images. This grid was superimposed over the crop 

map generated from ASTER image, and the area 

fractions of the 3 main classes in the test site (wheat, 

barley and maze) within each grid cell were 

computed. The fraction images that are produced are 

shown in succeeding figure 6. 

 

 
(a) 

 
(b) 

 
(c) 
 

Fig 6: Area fraction images for 

(a) maize (b) wheat (c) barley, that 

produced by crop map. 

 

3 Area Fraction Methodology 
The usual approach to carry out spectral mixture 

analysis is by modeling of spectral mixtures. 

Mixture modeling is the process of deriving mixed 

signals from pure endmember spectra while spectral 

unmixing aims at doing the reverse, deriving the 

fractions of the pure endmembers from the mixed 

pixel [7]. Several models have been proposed to 

unmix pixels and determine proportions of their 

components. The more particular ones are linear, 

artificial neural network, probabilistic, geometric or 

geometric-optical and stochastic geometric models 

[9]. These models are comprised of known and 

unknown parameters. The known parameters are 

always the observed reflectance from the pixel and 

the pure spectra of the pixel components (or 

endmembers). The unknown parameters then will 

have to be determined by properly using known 

parameters. 

 Dennison and Roberts [10] describe linear mixture 

model as “essential tool for remote sensing 

vegetation analysis”. Therefore, numerous studies 

have tested and developed this approach and 

obtained strong correlation between the actual land 

covers and estimated land covers but In general, the 

neural network outperformed the linear mixture 

model compared with linear and/or parametric 

approaches. The results obtained have been used to 

describe land cover change, seasonal change in 

vegetation, fractional vegetation cover and 

regeneration after disturbance (Dennison and 

Roberts [10], Foody and Cox [11], Lobell and Asner 

[2], Sagardia [1]). Both of these methods consider 

the reflectance of a pixel as combination of two or 

more “pure” spectra called endmembers (classes or 

components) and report the fraction of each 

endmember in each pixel [10]. Hence, 

mathematically, the observed reflectance ri for a 

pixel in band i will be; 

 

iciciii eafafafr ++++= ,2,21,1 ...
 

 

Where e is an error term, f is fraction of an 

endmember in a pixel, c is possible number of 

endmembers in the scene, a is the pure (or 

characteristic) spectra from the respective 

endmember. If we replace classes 1 to c with j, then 

the equation can be simplified as: 

 

∑
=

+=
c

j

iijii eafr
1  
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Hence, for a multispectral image of n bands; i = 1, · · 

·, n, there will be n linear equations. In addition to 

these n equations, there will be another equation, 

which is called sum-to-unity constraint equation as: 

 

1...21 =+++ fcff
 

 

It states that the sum of component proportions for 

each pixel should sum to 1 (provided that none of 

the fraction is negative). Hence we have a system of 

linear equations, which can be solved in a number of 

ways. With the matrix form we have the basic 

equation as: 

XFY *=  
 

Matrix F contains the class area fractions for each 

pixel, matrix X is the pure class responses, and 

matrix Y is the mixed image observations. This 

formulation is commonly used for two different 

purposes: sub-pixel classification and 

‘‘endmember’’ assessment [13].  

Sub-pixel classification aims to assess the matrix F 

(class area fractions per pixel) from the satellite-

registered Y and a priori known pure class responses 

X (in this context often termed ‘endmembers’). An 

important practical limitation of this approach in 

linear mixture model is that the number of classes 

cannot exceed the number of available bands (plus 1 

due to extra sum-to-unity constraint equation). This 

is achieved by solving the basic equation as: 

 

AYXXXYF tt *)*(** 1
==

−

 
 

The second application of these models oppositely 

tries to assess the matrix X with pure class responses 

(endmembers) from the image set Y and external 

knowledge on the area fractions F. As a solution, the 

basic equation is inverted as follows: 

 

YFFFX tt **)*( 1−
=

 
 

In this case the limitation is seldom problematic. 

 

4 Experimental results 
This study explored the potential of sub-pixel 

classification for regional crop area estimation. By 

area fraction images obtained through ASTER 

image, the method which solves the problem for X 

by using neural network model has been 

investigated. The result will be pure class responses. 

In addition, the limitation of number of available 

bands is not a problem in neural network model. The 

sub-pixel classification was performed with a 

simple, three layer back-propagation neural network, 

with 35 nodes in the input layer (NDVI images) and 

3 nodes in the output layer (class area fractions). In 

the case of vegetation, the number of nodes in the 

intermediate (hidden) layer was set to twice the 

input nodes plus one (i.e. 71 in this case), Kavzoglu 

and Mather [12]. The hyperbolic tangent sigmoid as:  

 

)12exp(1

2
)(

−−+
=

x
xy

 
 

was used as transfer function for the hidden layer 

and the log-sigmoid function 

 

)exp(1

1
)(

x
xy

−+
=

 
 

for the output layer. As the log-sigmoid function 

scales its outputs between zero and one, all fraction 

estimates automatically remained between the 

physical bounds (0.0 to 1.0). The neural network 

was trained with a sample of 5000 pixels selected 

randomly from data set. After training (i.e. 

definition of the neural network weights), the neural 

network was applied on the entire image. 

To compute the regressions and estimate the 

accuracy of the model, the result produced by neural 

network and reference data (obtained from ASTER 

image) were compared. 

Figure 7 displays the scatter plots and regression for 

the three main crops. The R
2
 value between neural 

network fractions and Reference data obtained from 

ASTER are 0.84, 0.60 and 0.75 for winter wheat, 

barley and maize, respectively. 

 

 
Fig 7: Scatter plots and linear regressions (REF 

produced by crop map = a + b * EST by neural 

network) for the validation of the area fractions of 

winter wheat (a), barley (b) and maize (c) estimated 

with the neural network model. 

 

Scatter plots and linear regressions show that the 

accuracy of the neural network method for crop area 

estimation is high enough to have reliable data for 

making proper decisions. Due to the spectral 

mixture of barley with other crops, the relevant R
2
 

value is unbiased estimation and the regression line 
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does not approach to the 1:1 diagonal (i.e.  a ≈ 0.0 

and b ≈1.0). 

5 Conclusions 
We have evaluated the feasibility of MODIS time 

series images for estimating crop area proportion. 

The crop map was used as a reference to investigate 

the potential of sub-pixel classification of low 

spatial resolution satellite sensor imagery for 

regional area estimation. Area fraction images that 

were produced using ASTER image were used as 

input data for neural network model. The neural 

network approach does not experience the inherent 

limitation of the linear mixture model where the 

number of classes is restricted to the number of 

input variables. In this paper, time series of MODIS 

NDVI images used instead of MVC-NDVI images 

of MODIS. The results strongly suggest that neural 

network subpixel classification provide useful 

regional information about crop area estimation. 
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