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Abstract: - The Volterra series have been successfully and widely applied as a nonlinear system modeling 
technique. Considered as a prototype, the second order Volterra filter (FV2) has an increased complexity in 
comparison with a linear filter. The filter based on the multi memory decomposition (MMD) structure 
represents a good approximation of the FV2 and significantly reduces the number of the filter operations. This 
paper proposes a computational efficient implementation of the MMD filter. The proposed implementation for 
the MMD filter is studied in a typical nonlinear system identification problem. The simulations show the very 
good performance of the proposed MMD structure in comparison with the results obtained by using a second 
order LMS Volterra filter.  
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1   Introduction 
A Volterra filter (series) represents a wide class of 
nonlinear systems. The series is a sum of 
generalized convolutions and can be thought as an 
extension of the linear case. The major drawback of 
the Volterra filter is the large number of the filter 
coefficients. Hence, the Volterra model 
implementation needs an increased computational 
power that represents the major drawback in real 
time applications. Therefore, only low orders 
nonlinearities can be modeled in an efficient way. 
For a discrete-time and causal nonlinear system with 
memory, with an input [ ]nx  and an output [ ]nyV , 
the Volerra series expansion is given by [1]: 
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where N represents the model nonlinearity degree. 
Choosing 2=N , the input-output relationship of the 
FV2 can be expressed: 
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The input-output relation can also be written in 
terms of nonlinear operators, [ ]iH , as indicated in 
the following relation: 
 

[ ] [ ][ ] [ ][ ] [ ][ ]nxnxnxnyV 210 HHH ++=  (3) 

 
In the above representations, the functions 

NihiV ,0, =  represent the Volterra kernels 
associated to the nonlinear operators. 
The nonlinear model described by the relations (2) 
and (3) is called a second order Volterra model. 
Note that the above representations have the same 
memory for all the nonlinearity orders. In the most 
general case, the relation (1) may use different 
memory for each nonlinearity order. A further 
simplification can be made to the relation (1) by 
considering symmetric Volterra kernels. 
The kernel ],,[ 1 iiV kkh �  is symmetric if the indices 
can be interchanged without affecting its value.  
The second order Volterra kernel is a symmetric 

)1( +MM quadratic matrix. In these conditions the 
system output can be expressed as indicated in the 
relation: 
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If we consider symmetric kernels, as indicated 
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above, the second order Volterra kernel [ ]212 , kkh V  
requires the determination of 2/)1( +MM  
coefficients [2], [3]. 
In the technical applications the kernel estimation 
accuracy becomes the major problem [4] - [9]. 
In situations that imply systems having time varying 
parameters, the adaptive methods for kernels 
estimation are widely used.  
A big advantage of the Volterra models, if compared 
with other models, is that the system response is 
linear with the filter coefficients. The nonlinearity is 
reflected only by multiple products between the 
delayed versions of the input signal. 
Due to this fact, many methods from linear adaptive 
filter theory can be adopted for the Volterra filter 
modeling. For example, the nonlinear adaptive 
filtering technique, based on the Volterra model, is 
used for the nonlinearities identification problem.  
In [4] we have proposed a new implementation of 
the second order LMS Volterra filter, that can be 
extended to higher order Volterra filters.  
This paper presents an efficient implementation of 
the second order Volterra filter based on the MMD 
approach proposed in [10]. 
The performances of the MMD filter are compared 
with those of a second order LMS Volterra filter. 
 
 
2   The MMD approach 
The MMD filter represents an efficient 
approximation of the second order Volterra filter. 
The filter structure is composed of 3 linear FIR 
filters and one multiplier, as indicated in Fig. 1. 
 
 

 
 
 

Fig.1 The structure of the MMD filter 
 
 
The input - output relation of the MMD filter is: 
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(5) 

 

where aM represents the prefilters [ ]nh1  and [ ]nh2  
memory length and pM  is the memory length of the 

postfilter [ ]nhp . The total memory length of the 

MMD filter is 1−+ pa MM . The MMD filter 

requires pa MM +2  filter operations and one 

additional multiplication per time instance. As it can 
be seen, the number of the filter operations increases 
linearly with the memory length. This produces a 
significant reduction of the computational effort 
compared to the general Volterra filter 
implementation. 
The second order kernel of the MMD structure can 
be obtained by comparing relations (4) and (5): 
 

[ ] [ ] [ ] [ ]�
−

=
−−=

1

0
212 ,

pM

k
p kjhkihkhjih  

 
(6) 

 
The multiplication of the outputs of the prefilters 

[ ]nh1  and [ ]nh2  gives a quadratic filter with 
separable 2nd order kernel [ ] [ ]nhnh 21 . This kernel is 
weighted by the coefficients of the post filter [ ]nhp  

and summed up at different memory length to give 
the effective MMD kernel. Consequently, the filter 
has a multi memory decomposition (MMD) 
structure. 
The MMD kernel is identically zero for 
displacements larger than 1−aM  and it is not 
symmetric. As indicated in [1], it is easy to obtain a 
symmetrized MMD kernel which gives the same 
filter output according to: 
 

[ ] [ ] [ ]( )ijhjihjih s ,,
2
1

, 222 +=  
 
(7) 

 
 
2.1  Filter coefficients determination 
Two different approaches can be used to determine 
the optimal filter weights for [ ]nh1 , [ ]nh2  and 

[ ]nhp . The first one is based on the approximation 

of the effective MMD kernel to a given reference 
kernel. The second approach is an adaptive 
algorithm and uses the input and output 
measurements of the unknown nonlinear system. 
The well known LMS algorithm is used to update 
the filter coefficients. 
Let it be [ ]ne  the difference between the desired 
filter output and the current adaptive filter output: 
 

[ ] [ ] [ ]nyndne −=  (8) 

][1 nh  

][2 nh  

×  

][1 nz  

][2 nz  

][nz  
][nhp  

][ny  ][nx  
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The implementation proposed in this paper is based 
on the successive update of the linear filters in the 
MMD structure. 
The update equations are: 
 

[ ] [ ] [ ] [ ] [ ]nhnZnenhnh p2/12/12/1 21 µ+=+  (9) 

 
[ ] [ ] [ ] [ ]nznenhnh pp µ+=+ 21   (10) 

 
 
2.2   The proposed implementation 
To describe the proposed implementation let’s 
introduce the matrices notations ][1 nH , ][2 nH  and 

][nH p  for the coefficients of the transversal filters 

from the MMD structure: 
 

[ ] [ ] [ ] [ ][ ]11 1111 +−−= aMnhnhnhnH �  
 
 (11) 
 

 

[ ] [ ] [ ] [ ][ ]11 2222 +−−= aMnhnhnhnH �  
 
 (12) 
 

 

[ ] [ ] [ ] [ ][ ]11 +−−= ppppp MnhnhnhnH �  
 
 (13) 
 

 
With the adaptive algorithms the matrices are 
updated at each moment. 
To the input signal we attach the instant matrix: 
 

[ ] [ ] [ ] [ ][ ]11 +−−= ManxnxnxnX �  
 
 (14) 
 

 
According to the above notations, the instant outputs 
of the linear filters [ ]nh1  and [ ]nh2  are: 
 

[ ] [ ] [ ]nHnXnz T
11 =   (15) 

 
and  
 

[ ] [ ] [ ]nHnXnz T
22 =   (16) 

 
The important part of the proposed implementation 
is represented by the calculus of matrices 2/1Z  and 
Z  in the update equations (9), respectively (10). 
At each iteration step the columns of the matrices 

2/1Z , having a )( pa MM ×  dimension are 

calculated according to: 
 

[ ] [ ] ]1[1:, 1/22/1 +−=+ cnXnzcZ T  (17) 

 
In (17) c represents the number of columns in 

2/1Z matrices and takes pN  values: 1,0 −pN . 

[ ]nX  is the input matrix that “runs” on the input 
signals values. The results are indicated by the 
relations (18) and (19). 
The matrix Z elements can be calculated according 
to: 
 

[ ] [ ] [ ]nznznz 21=  (20) 

 
with [ ]nz1  and [ ]nz2  given by the relation (15) 
respectively (16).  
The adaptation error is calculated according to: 
 

[ ] [ ] [ ] [ ]nHnZndne T
p−=  (21) 

 
Finally, the filters update equations are: 
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where µ  is the step size.  
 
 
3   Experiments and results 
The proposed implementation of the MMD filter 
(MMDF) was studied in a typical nonlinear system 
identification application, presented in Fig 2. 
The results have been compared with those obtained 
by using a LMS second order Volterra estimator [4] 
for the second order nonlinear system with memory. 
We have represented the second order kernels 
determined by using the two approaches and we 
have compared the results. 
The nonlinear system with memory consists of a 
linear filter, with impulse response [ ]nh  in cascade 
interconnected with a nonlinear system without 
memory as shown in Fig.2. The obtained system is a 
second order nonlinear system with memory that can 
be modeled using the Volterra series. 
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Fig.2 Nonlinear system identification using the 
MMD filter 

 
The impulse response of the linear filter was 
implemented by sampling the continuous response 

( )th  from relation (25) as indicated by relation (26). 
 

( ) ( ) ( )tttth σ−= )1231sin(2.251exp
98.0

1256
 

  
 (25) 

 

[ ] ( )e
e

nTh
T

nh
1=  

  
 (26) 

 
In the above relation eT  denotes the sampling 
period. 
The input signal [ ]nx  was generated by coloring a 
white Gaussian sequence [ ]nu  with the filter 
described by the input – output relation: 
 

[ ] [ ] [ ] [ ]28.1122 −+−−= nunununx   (27 ) 

 
The filter coefficients matrices ][1 nH , ][2 nH  and 

][nH p  were initialized with small numbers 

randomly distributed between –0.01 and 0.01. The 
important part of the adaptive implementation is 
represented by the update of the matrices 2/1Z  and 

pZ  as indicated by the equations )24()22( ÷ . The 

proposed formulas (17), (18) and (19) significantly 
reduce the computational effort. 
Simulations have been done using the MATLAB 
software. Figure 3 shows the adaptation error 
evolution corresponding to the experiment described 
in Fig.2. The values chosen for the filters length 
were: 30=aM  and 25=pM . 

As it can be seen, significant adaptation arises only 
after a certain delay. After this period there is a fast 
adaptation and the error becomes very small. 
The number of iterations can be reduced only if one 
linear filter is updated per iteration, but the 
adaptation process becomes very slow.  
 
 

 
 

Fig. 3 The error corresponding to the adaptive 
determination of the MMD filter coefficients 

 
 
The experiment described by Fig.2 was repeated 
using a second order LMS Volterra filter instead of 
the MMD filter. The implementation was made as in 
[4]. For the ( )MM ×  dimension of the second order 
Volterra kernel, Vh2 , we have chosen the value 

30=M . The evolution of the adaptation error is 
indicated in Fig.4. 
 
 

 
 
Fig.4 The adaptation error for the second order LMS 

Volterra estimator 
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The second order kernel of the MMD structure was 
calculated, based on determined coefficients values 
of the filters [ ]nh1 , [ ]nh2  and [ ]nhp , using the 

relations (6) and (7). It is depicted in Fig. 5 and 
represents a good approximation of the second order 
Volterra kernel. 
 
 

 
 
 

Fig.5 The second order kernel corresponding to the 
MMDF 

 
 

The second order Volterra kernel determined using 
the adaptive LMS approach proposed in [4] is 
represented in Fig. 6. 
 
 

 
 
 

Fig.6 The second order kernel determined using the 
LMS algorithm 

 
 
 

4 Conclusions 
In this paper a computational efficient 
implementation of the second order Volterra filter 
based on the MMD approximation was presented. 
The reduced number of the filter operations for the 
second order kernel calculus and the proposed 
update equations represent the major advantages of 
this implementation. 
The MMD filter requires only one fourth of the 
operations of the general Volterra filter and it a 
similar performance. This property recommends the 
MMD filter in applications where the accuracy of 
the estimated second order kernel is very important. 
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