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Abstract: - Dual codes play an important role in the field of error detecting codes on a binary symmetric channel. Via 
the MacWilliams Identities they can be used to calculate the original code’s weight distribution and its probability of 
undetected error. Moreover, knowledge of the minimum distance of the dual code provides insight in the properties of 
the weights of the code. In this paper firstly the order of growth of the dual distance of a CRC as a function of n is 
investigated, and a lower bound is given. Then, on one hand, this bound is used to derive an upper bound on the 
probability of undetected error of a CRC. On the other hand it is applied to some results about the range of binomiality 
and the covering radius of a CRC. Finally a new interpretation of Sidel’nikov’s theorem on the cumulative distribution 
function of the weights of a code is given. In this way the conclusions may attribute a new meaning to some results 
about codes with known dual distance.  
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1   Introduction 
Let Cn be a [n, k] linear code on a binary symmetric 
channel without memory, where n is the block length 
and k is the dimension of the code. The probability of 
undetected error of such a code is given by (see  [7] for 
example): 
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where  
  Al  = component of the weight distribution of Cn 

      = number of code words of weight l, 
  ε  = bit error probability, 
  n  = block length. 
  dn  = minimum distance of Cn.  
The dual code Cn

┴ of Cn is defined as the space of all n-
tuples orthogonal to all code words of Cn: 
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The dual code is an [n, n - k] linear code. Its weight 
distribution is closely related to the weight distribution 
of Cn by the MacWilliams Identities (see [7]). If  Bl are 
the components of the weight distribution of Cn

┴, the 
subsequent equation is an easy consequence of those 
identities (cf. [13] for example): 
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┴ being the minimum distance of Cn
┴ (the “dual 

distance”) and  r = n – k. This equation turned out to be a 

useful instrument for calculating the probability of 
undetected error via the weight distribution of the dual 
code. This has been done in a lot of papers for a lot of 
Codes. On the other hand we thought it to be the 
appropriate tool to investigate the properties of the 
probability of undetected error in a more abstract way. 

 
 

2   The Role of the Dual Distance  
Because of (2) it was to be expected that dn

┴ would play 
a major role when dealing with bounds on pue(ε,Cn). But 
the dual distance on its own is a code parameter 
deserving closer attention. In [1] and [4] bounds on the 
components of the weight distribution can be found for 
codes with known dual distance. One of the leading parts 
in this game is occupied by the relative dual distance 
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Witzke and Leung in [12] used (2) to show that for a 
CRC Cn generated by a polynomial of degree r the 
probability of undetected error converges to the 2-r

-

bound 
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for all 0 < ε ≤ ½. Part of their proof is the fact that the 
minimum distance dn

┴ of Cn
┴ “increases without bound” 

as n (or k) increases. But their proof does not show how 
exactly dn

┴ depends on n. Nor it gives any hint as to the 
order of growth of dn

┴. Furthermore it contains no 
statement how fast or how slow convergence in (3) has 
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to be understood, and there is no error estimate. But 
above all we thought it desirable to get bounds on   
pue(ε,Cn) involving the 2-r

-bound. That is, the problem is 
to find the order of growth of dn

┴ as n increases and then 
to find bounds on δn

┴ and on pue(ε,Cn). This will be done 
in the next section. Once determined the order of growth 
of dn

┴, it will be an easy task to attribute a new meaning 
to some results about codes with known dual distance. 
 
 
3 The Order of Growth of dn

┴ 
 
 
3.1 A Lower Bound on dn

┴ 
Let us first state our main result. As Witzke’s and 
Leung’s proof does, our proof is based on (2) and on the 
matrix representation of Cn

┴. As common use,  x   has 
the meaning of the floor function..  
 
Theorem 1: Let Cn be a [n, k] CRC with a generating 
polynomial g of degree r = n - k, then a lower bound on 
the dual distance dn

┴ is given by  
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Proof: Without loss of generality we may assume that  
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with λ0 and λr different from 0. 
The generating matrix H of Cn

┴ consists of an r x r 
identity part In-k and a r x k parity part PT (cf. [7] and 
[11] for example):   
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Let further t be defined by 
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where the elements of the ith column  
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are the coefficients of a member of the congruence class 
}{ iX of iX modulo g(X). The parity part PT is 

composed of square matrices Pj  and a residue term Rn 
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First of all we shall prove that the column vectors of Pj 
are linearly independent for all j =1, 2,…, t - 1 . Assume 
therefore 
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represent the congruence classes  
}{,},{},{ 11)(1 −++ rjrjrj XXX � , 

this means that the congruence class of  
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Therefore the polynomial 
            )αα(α 1

1-10
−+++ r

r
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is divisible by g(X). And because rjX  is not contained in  
g(X) as a factor, the polynomial 
           1

1-10 ααα −+++ r

r XX �  
(degree r - 1) must be divisible by g(X) (degree r ). This 
can be true only if  1

1-10 ααα −+++ r

r XX �  is the zero 

polynomial, i.e. 0ααα 1-10 ==== r� . Because the 
row rank of a matrix is equal to its column rank the row 
vectors  
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of Pj are linearly independent for all j =1, 2,… , t - 1. 
Now for each code vector c є Cn

┴ there exists a message 
vector 0≠= ),,,( 21 rmmm �m such that 
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Consequently the weight of c amounts to 
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Because the row vectors of Pj are linearly independent 
all the vectors 
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are different from 0 and consequently have a minimum 
weight not less than 1. The weight of 0≠m  too is at 
least 1. This results in 
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If R = k/n is the rate of the code, an easy conclusion 
leads to the subsequent  
 
Corollary 2: Let Cn be a [n, k] CRC with a generating 
polynomial g of degree r = n - k, then the dual distance 
dn

┴ and the relative dual distance δn
┴ satisfy the lower 

bounds 
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Proof: By (4) we get 
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Corollary 2 reveals us the order of growth of dn

┴: The 
dual distance increases at least linearly as a function of  
the block length n. The relative dual distance (the ratio 
of this linear dependence) is not less than R/r.   
 
 
3.2 An Upper Bound on the Probability of 

Undetected Error 
From Theorem 1 we immediately get an upper bound on 

pue(ε,Cn) 
 

Theorem 3: Let Cn be a [n, k] CRC with a generating 
polynomial g of degree r = n - k, then the probability of 
undetected error satisfies the upper bound 
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for all ε є [0, 1/2]. 
Proof: By (2) and (4) we get (cf. Wolf&Blakeney [13]) 
 
             { } ndrr

n εεCp n )(1)21)(12(12),(εue −−−−+≤
⊥−  

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007     3



                                .εε nr

n

r

r
r )(1)2(1

2
12

2 −−−
−

+≤






−   

                                                                                       █  
From Theorem 3 we then deduce 
 
Corollary 4: Let Cn be a [n, k] CRC with a generating 
polynomial g of degree r = n - k, then the probability of 
undetected error satisfies the upper bound 
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for all ε є [0, 1/2]. 
 
Remark 1: Omitting the factor (2r - 1)2-r, from (2) and 
Corollary 4 we get 
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pointing out once more Witzke’s&Leung’s result: The 
sequence of functions (pue(ε,Cn)) converges point wise 
for n → ∞: 
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The convergence cannot be uniform on [0, 1/2]. 
Otherwise the limit function had to be continuous on [0, 
1/2], a fact being evidently false. 
 
Remark 2: For a couple of years it was supposed that 
CRCs satisfy the 2-r-bound. This is not true (for codes 
violating the 2-r-bound see Wolf&Blakeney [13]). 
Consequently the bound of Theorem 3 (or Corollary 4) is 
weaker then the 2-r-bound. But anyway, Corollary 4 
contains an error estimate: pue(ε,Cn) exceeds 2-r by a 
maximal amount of 
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The typical shape of Φ is represented by Fig.1 (n = 544, 
k = 512, r = 32). 
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Fig. 1 
The Graph of Φ shows a peak of approximately 0.79 
near ε =0.0055. It is below peaks of this kind that the 

humps of the probability of undetected error hide, which 
are responsible for the violation of the 2-r-bound.  
 
 
3.3 The Range of Binomiality of the Distance 

Distribution and the Covering Radius 
In several publications ([1], [2], [4], [5], [6]) the range of 
binomiality of a linear code has been investigated, i.e. 
the range of all indices l with Al satisfying 
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where γ > 0 is a positive constant. A common result of 
all papers is that there is binomial behavior of Al, when l 
is taken from some neighborhood of n/2. Moreover, in 
each subinterval large enough there is an index i such 
that the binomial bound is asymptotically met (see for 
example [1] or [4]). Krasikov and Litsyn call this 
property “asymptotically binomial distance distribution”. 
One part of these results is dealing with codes of known 
dual distance. First of all, let us  state exemplarily one of 
the  results of Ashikhmin, Barg&Litsyn ([1]): 
A linear code Cn has asymptotically binomial distance 
distribution for all indices l with   
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(cf. [1], Theorem 6). 
From Corollary 2 we now easily deduce 
 
Theorem 5: Let Cn be a [n, k] CRC with a generating 
polynomial g of degree r = n – k. Then Cn has 
asymptotically binomial distance distribution for all 
indices l with 
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Proof: a) The function 
           λ)λ(2)(λ −=f  

is increasing in [0, 1], and the result then follows from 
(5) and (8).                                                                       █  
 
In a similar way Corollary 2 may be applied to other 
theorems of Ashikmin, Barg&Litsyn. in [1] or 
Krasikov&Litsyn in [4].  
Relations between covering radius and dual distance of a 
CRC have been studied by Tietäväinen in [9],[10] or by 
Ashikmin, Honkala, Laihonen&Litsyn in [3]. Corollary 
2 may be applied to them as done above, giving those 
results a new interpretation too. 
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3.4 Sidel’nikov’s Theorem  
Last but not least let us focus our interest on 
Sidel’nikovs Theorem proven in [8]. It states that for 
each [n, k] linear code with n > 3 and dn

┴ ≥ 3 its weight 
distribution is asymptotically normal in the following 
sense 
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≤
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for all real z � (-∞, ∞). Here A(z) has the meaning of the 
cumulative distribution function of the weights of C 
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all code words, and ∑ =
=

n

l lal
0

22 )-(µσ  is the variance. 

F(z) is the cumulative distribution function of the 
Gaussian distribution. Now by (5) we get the subsequent 
version of Sidel’nikov’s Theorem  
 

Theorem 5: Let C be a [n, k] CRC with n > 3 and dn
┴ ≥ 

3. Then the weight distribution of Cn is asymptotically 
normal in the following sense  
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This version of Sidel’nikov’s Theorem bears some 
resemblance to a Theorem of Yue and Yang ([14]). It 
depends on the length r of the check sum whether the 
bound of Theorem 5 or the bound of Yue and Yang is 
the better one. 
 

 

4   Conclusions 
Via the MacWilliams Identities the minimum distance of 
the dual of a CRC has been investigated, and a lower 
bound has been found. Firstly, this bound yielded an 
upper bound on the probability of undetected error. 
Secondly, it served to determine the range of binomialty 
of a CRC helping to interprete the results of 
Krasikov&Litsyn and Ashikhmin, Barg&Litsyn. An 
application to the covering radius was mentioned. 
Finally it was applied to Sidel’nikov’s theorem about 
asymptotical normality of the weight distribution.  
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