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Abstract:  We experiment with different fusion methods when bagging k-NN classifiers under various conditions. 

Experiments with four types of bagging are made at four training set sizes, using two metrics. The aim is to find the 

conditions for an optimum bagging performance. Additionally we aim to find the best rule under the specified conditions. We 

compare the performance of the different fusion strategies under each condition. Fusion methods used are Sum, Modified 

Product (MProduct) [2], Vote and Moderation [1]. Results show that the performance depends on the data used, number of 

nearest neighbors (k), number of fused classifiers and size of training set. Over all the three rules derived from Product show 

a close performance, while Vote shows an opposite performance. Among the three rules Moderation either follows Sum or 

MProduct. Results indicate MProduct outperforms Sum at many instances. At some of these instances Sum did not 

outperform the single classifier while MProduct did. Moderation is the second best, while Vote is inferior especially at even 

numbers of k. This is an inherited weakness of Vote, where at even number of close samples ties are randomly resolved. At 

k=1 all rules yield similar results. There are few instances where Moderation outperforms all. In general MProduct is the best 

choice. 
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1.  Introduction 
In order to improve the accuracy of classifiers 

researchers have found that fusing (combining) the 

decisions of more than one classifier would yield 

superior results over the best single classifier. In the 

past decade, the use of classifier fusion to improve 

classification accuracy has become increasingly 

popular [1,2,12,13,14,15,17,20,21,22] Bagging [6], 

proposed by Breiman, is a method of generating 

multiple versions of a predictor or classifier, via 

bootstrapping and then using these to get an 

aggregated decision. The multiple versions of 

classifiers are formed by making bootstrap [14] 

replicas of the training set, and these are then used to 

train additional classifiers.  

 

Bagging has been successfully applied to practical 

cases to improve the performance of unstable 

classifiers. A sample of such papers includes [10, 8]. 

Many authors have investigated its merits and 

compared bagging to boosting or other methods 

[4,7,9,16,18].  In [6] Breiman argued that bagging 

would not improve a nearest neighbor (NN) 

classifier, because it is stable. He confirmed this 

experimentally by showing that, when bagging NN 

classifiers, good results  were achieved on 3 data sets 

out of 6. But, when bagging decision trees, better 

error rate on all 6 data sets was observed. Most 

research to date has been directed towards applying 

bagging to unstable classifiers, such as decision trees 

and neural networks. 

 

We aim to determine methods and conditions that 

improve k-NN classifiers under bagging. In [3] we 

attempted to improve the performance of bagged k-

NN classifiers, by proposing “modified bagging” 

which takes advantage of prior knowledge. More 

investigation is required to find the reasons behind 

its inconsistent performance. We aim to continue our 

investigations along several broad lines in an attempt 

to further improve the performance of bagged k-NN 

classifiers, beyond what we achieved through 

modified bagging, and find the methods, conditions 

and data properties that lead to the successful 

performance. Experimental investigation of some 

novel methods that lead to the destabilization of k-

NN component classifiers, under varying data types, 

will be conducted. One such method would involve 

manipulation of the distance metric.. 

 

Our previous work [3] on bagging k-NN under small 

sample size showed that although regular bagging 

could not outperform the single classifier, modified 

bagging which is implemented with some 

modifications to the bagging method, may 

outperform the single classifier. The improvements 

were mostly at medium training set sizes, while at 
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large training set sizes it had a similar performance 

to regular bagging and the single classifier. Even at 

the medium set size, for few data types, we did not 

always achieve a significant improvement. More 

investigation is required to find the reasons behind 

this variable performance. We also aim to further 

improve the performance of bagged k-NN 

classifiers, beyond what we achieved through 

modified bagging, and find the methods, conditions 

and data properties that lead to the successful 

performance. We initially used the Euclidean 

distance metric to find the closest k samples. 

However, the limitation of the Euclidean metric is 

that it does ensure that the k nearest neighbors are 

drawn from a region with a constant a posteriori 

class probability distribution. This may lead to 

suboptimal performances. Therefore, we 

experimented with a more robust distance metric 

proposed by Short and Fukunaga [19]. The 

experiments were run for several soft fusion 

methods to find which leads to the largest 

improvement of bagging. And to gain more insight 

on the conditions that lead to a methods superiority. 

Overall MProduct [2] outperforms the rest most 

often.  

 

In the next section we will overview the new metric. 

In section 3 we present the different bagging 

methods. Section 4 contains the experimental 

methodology. The results are presented in section 5. 

The paper is brought to conclusion in section 6. 
 

 

2.  The Optimal distance metric 
Short and Fukunaga [15] showed that the variance of 

finite sample size estimates may be minimized by a 

proper choice of the metric. The use of such a metric 

should lead to performance improvement. The 

optimal distance metric is defined as follows. For a 

given test sample x0_ the distance to a point Xe  is 

defined as ; 
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For k-Nearest Neighbors we find the k closest 

samples to x0, then using their labels we decide 

which class x0 belongs to by the majority voting. The 

necessary precondition is that this distance measure 

is applied only to the samples close to x0 Hence, 

initially the closest n  samples are found using the 

Euclidean distance, and then from among these n  

samples the closest k are found according to 

equation 1. We automatically select n  to be 

2

3k
rounded to the closest integer. 

 

3 Bagging and Modified Bagging 

Procedures 
When a data set is small, the proportions of training 

patterns from the different classes may be 

unrepresentative. The probability of drawing a 

training set with samples from some class 

completely missing becomes non negligible. When 

this occurs, bagging may even become 

counterproductive. 

For this reason we set out to investigate the effect of 

bootstrap control as suggested in [6]. Three 

modifications of the standard bagging method are 

considered. We name the standard procedure as 

method 1 and its modified versions as methods 2-4. 

The methods which exploit increasing amounts of 

prior knowledge can be summarized as follows. 

 

Method 1 Given a learning set, each bootstrap set is 

created by sampling from the learning set randomly 

with replacement. The cardinality of each boot set is 

the same as the size of the training set. 

Method 2 When bootstrap sets are created from the 

learning set we check the ratio of the number of 

samples per class in the bootstrap set. This ratio is 

compared to the ratio of samples per class in the 

learning set. If the difference between the compared 

ratios is larger than a certain class population bias 
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tolerance threshold we reject the bootstrap set. The 

bias tolerance threshold used is set at 10%. 

Method 3 This method is similar to method 2 except 

that the bootstrap set ratio is compared to the ratio in 

the full set. By full set we mean the set containing all 

samples, learning and test samples. This full set ratio 

simulates a prior knowledge of the class distribution 

in the sample space. 

Method 4 Here we only require that all classes be 

represented in the bootstrap set, without enforcing a 

certain ratio of samples per class. This is done by 

rejecting any bootstrap set that does not represent all 

classes. 
 

4 Experimental Methodology: 
In this project we experiment with bagging [6] k-NN 

classifiers. The experiments are simulated using 

Matlab on several Pentium based personal 

computers.  

 

Four real data sets from the UCI repository [5] are 

used. Training and test sets are generated from the 

original data set. For each of the data sets a single 

training set is randomly taken from the original 

sample space, i.e. the full data set. The K-NN 

classifier built using this original learning set is 

referred to as the single classifier. The remaining 

samples are used as a test set. N Bootsets are 

generated using the training set. The decision of the 

N boot sets are aggregated to classify the test set. As 

suggested by Breiman we may start with N = 25 as 

the number of aggregated k-NN classifiers. The 

experiments are then repeated for varying N, number 

of component k-NN classifiers, to have an overview 

of the effect of the number of classifiers on system 

performance. These results are referred to as the 

bagged classifier results. We compare these results 

to those obtained from the single classifier, and to 

those obtained from other bagging methods of 

creating bootstrap sets, as outlined in section 3, for 

two types of learning sets. In the first case the 

learning set is created by randomly taking samples 

from the full data set. This results in a set that may 

contain some but not all classes. The second type of 

learning set is referred to as a modified learning set. 

It is constructed using Method 3 which was 

mentioned as a technique to create unbiased 

bootstrap sets. This results in a set that is 

representative of all the classes, with class 

population ratios similar to those of the full set. The 

modified learning set simulates an unbiased sample 

space. 

 

To obtain unstable k-NN classifiers, we propose 

using an optimal distance metric proposed by Short 

and Fukunaga [19], as explained in section 2. We 

repeat the experiments using the Euclidean metric, in 

order to make a direct comparison and asses the 

merits of bagging in conjunction with the optimal 

metric. 

 

In our previous experiments, for each set size, the 

number of nearest neighbors, k, is found 

automatically as the square root of the number of 

training sets rounded to the closest integer. In this 

paper 10 values of k are used for each training set 

size, to see the effect of k on the bagging 

performance under the new metric. 

 

The above is repeated for the four training set sizes 

including 10, 20, 40 and 80 samples. The 

experiments are repeated for different data sets to 

find which leads to improved performance. The data 

sets used are obtained from the UCI repository, and 

the characteristics are shown in table 1. All 

experiments are repeated 100 times then averaged to 

achieve statistically reliable results.   

 

5 Results: 
We experiments with bagging kNN classifiers using 

four fusion methods. Our results, on 4 data sets, 

indicate that the three methods derived from Product 

yield similar performance, while Vote is different. 

 

Data name No. of 

samples 

No. of 

features 

No of 

classes 

Wisconsin 

Breast 

Cancer, 

BCW 

699 9 2 

Ionosphere 351 34 2 

Iris 150 4 3 

Wine 178 13 3 
 

At the largest training set size bagging with an 

optimal metric is able to outperform the single 

classifier contrary to when the Euclidean metric is 

used. At the largest set size sampling problems do 

not exist and the new metric yields a good 

performance. Generally the optimal metric yields 

superior results over the Euclidean metric. We will 

focus on comparing the performance of the fusion 

methods using the optimal metric. 
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Figures 1 to 12 show results for the four data sets 

using four bagging methods. Each figure shows the 

classification rate of a bagging method fused using 

four different fusion methods, in comparison to the 

single classifier using the Euclidean and optimal 

metrics. For each value of k we can compare the 

performances at different number of fused 

classifiers, ranging from 3 to 25 bootstrap sets. The 

values of the x-axis represent the number of fused 

bootstrap sets, when multiplied by 2 and added to 1. 

Therefore, 12 represents 25 bootstrap sets, while 5 

represents 11. 

 

Results for the BCW data, using regular bagging 

method 1, show that at the smallest set size 

MProduct is the best rule or equal to the best. At k=7 

it is the only rule that can outperform the single 

classifier. This is true for the four set sizes. While 

Sum using the optimal metric bagging is almost 

never superior. It only outperforms MProduct 

insignificantly at the largest set size. At k=7, for all 

set sizes, MProduct shows the best performance.  

 

Using bagging method 2, at the smallest set size, 

Vote is the best for k=5 and 7. We note that Vote in 

conjunction with the optimal metric is the best rule 

while Vote using Euclidean metric shows the 

weakest performance. At set size 2, Vote is the best 

at k=7. As the set size increases MProduct improves 

and all fusion methods become close. At the largest 

set size MProduct is either best or close to it. 

We note that Vote deteriorates at even values of k. 

however at odd k, we found that the optimal metric 

improves Vote to reach the highest performance. 

 

Using bagging method 3, Sum and Moderation are 

close to the leading MProduct rule, while Vote is 

worst than all. At the fourth bagging method, mostly 

MPrduct is best or equal to Sum and Moderation. 

We found that MProduct is consistently best at k=7 

in addition to other values of k at different set sizes. 

 

Using bagging method 4 we find that MProduct is 

best at k=3, 4 5, 7, and 8. As the set size increases 

the values of k where MProduct is best increases to 

k=7, 8, 9 and 10. We find that it is the only rule that 

outperforms the single classifier at k=7 for the 

largest set size when a modified training set is used. 

For the rest of the values of k and set sizes the rules 

show a close performance. 

 

For the Iris at bagging method 1 MProduct is best at 

set sizes 1 and 2 when k = 4, 5 or 8. Interestingly at 

set size 1 only MProduct outperforms the single 

classifier. As the set size increases Moderation and 

Sum become best when k=4, while MProduct is still 

best at k=8. When bagging method 2 is used fusion 

methods are mostly close especially at large set 

sizes. For bagging method 3 we get mixed 

performances and it is uncertain which rule is best. 

Using bagging method 4 at set size 1, MProduct is 

the only rule that outperforms the single classifier. It 

is by far the best. As the set size increases MProduct 

remains to be the best but the difference in 

performances is reduced until all three rules become 

equal at set size 4. Vote is mostly worse than other 

rules. 

 

For the Ionosphere data, we found that MProduct 

outperforms all at all training set sizes, except the 

smallest, and for all bagging methods when k=3 and 

4. Also, for bagging methods 1 and 2 MProduct is 

best at k=7 and 8. Otherwise results are mixed. 

 

For the Wine data, we found that for the smallest set 

size, MProduct is best at k=3 to 9. This advantage 

decreases as the set size increases. When modified 

learning set is used the rules perform equally. An 

exception is at the smallest set size where MProduct 

outperforms the rest. 

 

 
Figure 1 BCW Classification rate for the fusion rules 

using bagging method 1 at set size 1.  

 

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007     72



Fig

ure 2 BCW Classification rate for the fusion rules 

using bagging method 4 at set size 4  

Fig

ure 3 BCW Classification rate for the fusion rules 

using bagging method 3 at set size 1 

 

Fig

ure 4 BCW Classification rate for the fusion rules 

using bagging method 2 at set size 4 

 

 

6 Discussions: 
Results generally do not show a single rule 

outperforming the rest. However, we note that the 

three rules derived from the product rule show 

similar results. Vote is sometimes close to them but 

mostly falls behind. There are some instances where 

MProduct outperforms the rest. Occasionally it is the 

only rule that outperforms the single classifier. A 

close study of these instances will yield useful 

information on how to improve the bagging 

performance. 

   

Varying Number of combined bootstraps: 

We experimented with combining an odd number of 

bootstrap sets ranging from 3 to 25. To verify the 

effect of the number of combined classifiers on the 

rules performance under the compared metrics. We 

find that increasing the number of fused classifiers 

improves the rules. Mostly we achieve the best 

results early in the curve, at 5 or 9. However to 

consistently obtain best results more than 20 

classifiers must be combined.  

 

Fig

ure 5 Iris Classification rate for the fusion rules 

using bagging method 1 at set size 1. 

 

Fig

ure 6 Iris Classification rate for the fusion rules 

using bagging method 4 at set size 1 
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Fig

ure 7 Iris Classification rate for the fusion rules 

using bagging method 4 at set size 4. 

 

Fig

ure 8 Iris Classification rate for the fusion rules 

using bagging method 4 at set size 2. 

 

Fig

ure 9 Ionosphere Classification rate for the fusion 

rules using bagging method 2 at set size 1. 

 

Fig

ure 10 Ionosphere Classification rate for the fusion 

rules using bagging method 2 at set size 2. 

 

Varying number of nearest neighbors, k: 

We experimented with a varying number of nearest 

neighbors, k, ranging between 1 and 10. We found 

that at very small value of k = 1, the rules show 

similar results. The relative performances become 

different as k increases. The best values of k depend 

on the set size. Large values of k at the smallest set 

size would not yield good results if regular learning 

set is used. This is due to the fact that when a small 

number of classifiers exist the large number of 

nearest neighbors would include samples from the 

wrong class, which could be close to the boundary 

and lead to misclassification.  

 

 
Figure 11 Wine Classification rate for the fusion 

rules using bagging method 4 at set size 1. 

 
 

7 Conclusions: 
We experiment with four fusion methods under 

varying bagging kNN conditions. Experiments with 

four bagging methods using two training set types 

were made at four training set sizes, using two 

metrics. Fusion methods used are Sum, Modified 

Product (MProduct) [2], Vote and Moderation [1]. 
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Results show that the performance depends on the 

data used, number of nearest neighbors (k), number 

of fused classifiers and size of training set. We found 

that the relative performance of the rules was not 

affected by the change in the metric. Mostly bagging 

using the optimal metric outperformed the Euclidean 

metric. The same was true for the single classifier. 

To find the best rule we compare the rules under 

varying conditions. At k=1 all rules yield similar 

results. At other values of k the three rules derived 

from Product show similar results while Vote shows 

an opposite performance. Between the three rules 

MProduct outperforms the rest most often. At few 

instances bagging did not outperform the single 

classifier except when MProduct was used. 

Moderation either follows Sum or MProduct. While 

at very few instances outperforms all. On few 

instances Vote outperforms the rest otherwise it 

mostly falls behind. It was consistently inferior at 

even numbers of k. This is because at even number 

of nearest neighbors ties are randomly resolved. In 

general MProduct is the best choice. Further 

investigation of the cases where MProduct 

outperforms all will help understand when it is an 

optimum choice. 
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