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Abstract:These days, quantum secret communication algorithms different from quantum key distribution protocol
have been proposed, which are called quantum secure direct communication protocols. These do not aim to have
a key agreement between two communicators, but, to send a secret message directly using quantum devices. In
this paper, we propose a new quantum secret direct communication protocol which has advantages over the current
ones and also discuss its security analysis against the man-in-the-middle attack.

Key–Words:Quantum secure direct communication, Quantum key distribution, No-cloning inequality, Depolariz-
ing channel

1 Introduction

Although the perfect secret communication protocol
has been one of the most interesting issues in human
history, we do not have any perfectly secure sym-
metric key encryption schemes yet, except one-time
pad. The dilemma that a secure key distributuion is
needed for a secure data transmission seems to be re-
solved by the appearance of public key cryptosystems
(PKCs). However, they have some problems, e.g., the
heavy workload and the security based on the com-
putational assumption. Furthermore, most of the cur-
rent PKCs are considered to be broken by the appear-
ance of quantum computers. The quantum key distri-
bution (QKD) protocol [1] realized a key distribution
scheme with unconditional security (that is, not based

on any computational assumption.) This is a protocol
that the distant two parties can have the same random
private classical key by using quantum devices. This
so-called BB84 triggered the growth of constructions
of secure quantum cryptosystems. These days, there
are so many QKD algorithms and the unconditional
security of each protocol is discussed from various an-
gles. QKD stands on the position that, for safe data
transmission, it is enough to agree on the same key by
communicators securely, which has not been realized
with symmetric key encryption.

These days, different approaches of quantum se-
cret communication protocols have been taken, and
especially we focus on one of them, called quan-
tum secure direct communication (QSDC) protocols
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[2, 3, 5, 6, 8, 9, 7, 10, 11]. A QSDC protocol basi-
cally enables a direct secret transmission without key
agreement in the process. Compared to QKD, QSDC
has a big difference that a sender can transfer thede-
sired data, not random. In this paper, we propose a
new QSDC protocol, which has some advantages over
the other QSDCs or some QKDs. The current QS-
DCs have some undesirable features that: (1) trans-
mittable information is limited to be classical; and
(2) many EPR pairs or GHZ states are required. In
particular, the latter is not a good feature because of
the technical difficulty. Our QSDC protocol solves
these problems. First, it can carry an arbitrary quan-
tum state. This indicates that the protocol can be used
as a quantum communiocation scheme between two
hubs of quantum network; Second, no entanglement
resource is employed. In additional, an eavesdropper
on a channel can be detected efficiently. In general,
to increase the detection rate, many dummy qubits
are required. But, in our protocol, the detection rate
increases by therally of a message; Last, our pro-
tocol tolerates against photon-number-splitting (PNS)
attacks. Because the encoding operations applied to
the secret quantum state never be announced at any
step of the protocol. So, even if Eve obtains the per-
fect copy of the secret qubit, it is not enough to unveil
the secret perfectly. Thus, an ideal strict photon gen-
erator is not required in our protocol.

However, obviously, the PNS attack is not the
only eavesdropping. In this paper, we show that our
protocol is secure against theman-in-the-middle at-
tack that Eve pretends to be Bob. In other words,
the probability that the attack goes well is extremely
small, or the quality of the copy of the secret gets re-
ally worse if she wants to increase the success proba-
bility.

In the next section, Sec. 2, some basics required
to understand our prooves are explained. In Sec. 3,
our new QSDC protocol is presented. In Sec. 4, we
show that the protocol is secure against the man-in-
the-middle attack.

2 Asymmetric universal cloning ma-
chine and the depolarizing proba-
bility

Consider an asymmetric universal cloning machine
produces whose two copies emerge fromdepolariz-
ing channels. Through the channel, a quantum stateρ
is depolarized as it is replaced by the maximum mixed
state,I/2, with probabilityp and it is left untouched
with probability1−p. The consequent quantum state,

Ep(ρ), is described as

Ep(ρ) = (1 − p)ρ + p
I

2
. (1)

The fidelity ofEp(ρ) is described as

F (ρ, Ep(ρ))
= Tr

√
ρ((1 − p)ρ + pI/2)

√
ρ

= 1 − p

2
. (2)

Because, for arbitraryρ, I/2 = (ρ + XρX + Y ρY +
ZρZ)/4, equation (3) can be rewritten as follows.

Ep(ρ) = (1− 3p

4
)ρ+

p

4
(XρX+Y ρY +ZρZ)

= (1−p′)ρ+
p′

3
(XρX+Y ρY +ZρZ) (3)

wherep′ = 3p/4. We can see the depolarizing chan-
nel as the noise such that the probabilities of apply-
ing of operatorsI,X, Y, Z to a quantum system are
(1 − p′), p′/3, p′/3, p′/3, respectively.

Now, consider the two copies ofρ which emerge
from the depolarizing channels,γ1 = Ep(ρ), γ2 =
Eq(ρ). By equation (3), the two are depolarized with
probabilityp′ andq′ respectively. The relationship be-
tween the probabilities is described byno-cloning in-
equality[4],

p′ +
√

p′q′ + q′ ≥ 3/4
∴ p +

√
pq + q ≥ 1 (4)

3 The model and protocol
First, we describe the key idea of our direct commu-
nication protocol. Suppose the situation that a sender
(Alice) wants to send a secret message to a receiver
(Bob) securely, but they have no key agreement in ad-
vance.

Physically, they achieve the purpose as Fig. 1. Al-
ice has a treasure box and wants to send it to Bob.
First, Alice locks the box. She holds the key in her
hands and sends the box to Bob by post or something.
Bob can never open it unless he has Alice’s key. He
puts a new lock on the box, and holds his key and
sends the box back to Alice. Alice opens her lock
and sends the box to Bob. Finally, Bob gets the trea-
sure just by his key. At every transmission, the box is
locked by either key. An eavesdropper who does not
have the keys cannot open the box.

This method has both of advantage and disad-
vantage. ADVANTAGE: This method needs no key
agreement. A sender and a receiver simply have their
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Figure 1: Physical implementation
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Figure 2: Digital implementation

private keys in their keeping. This means the tolerance
of some attacks such as a PNS attack. DISADVAN-
TAGE: The classical (digital) implementation of this
method cannot achieve good security against the man-
in-the-middle attack.

Classical implementation and the problem
Fig. 2 illustrates a digital implementation. Alice has a
secret binary sequence,s, say0 in the figure for sim-
plicity. She encodes it by operationFA=“Don’t flip”
for example and sendsx = FA(s) = 0 to Bob. Bob
similarly encodes the data by operationFB=“Flip,” in-
dependent fromFA, and sendsy=FB(x)=1 back to
Alice. Alice decodes the bit byF−1

A =“Don’t flip”
and sendsz = F−1

A (y) = 1 to Bob. Bob decodesz by
F−1

B =“Flip” and gets the secret data,F−1
B (z) = 0.

An eavesdropper, Eve, keeps watching the trans-
mission channel. She makes a copy of every trans-
mitted data,x, y and z, and gets the secret since
x⊕ y ⊕ z = s. The reasons why she needs no special
efforts to get the secret data are as follows:

• the data encoding is whether flip or not;

• anybody can see the transmitted data without de-
struction; and

• anybody can make a perfect copy of the transmit-

(Alice) (Bob)

secret

φ φV

φWV W

1−V

φWVV 1−

1−W

φ

Figure 3: Naive quantum implementation
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Figure 4: Eve’s man-in-the-middle attack

ted data.

Next, let’s consider the following naive quantum
implementation.

Quantum implementation
Fig. 3 illustrates the framework of our quantum imple-
mentation. Alice has a secret of a single-qubit state
to be sent which is described as a unit-length vec-
tor of Bloch sphere,|ϕ⟩. Let S be Pauli group, e.g.,
S = {σi|0 ≤ i ≤ 3}. Alice chooses an operator,
V ∈ S randomly, applies it to|ϕ⟩, and sends it to Bob
through a quantum channel. (Needless to say,V |ϕ⟩
appears a maximally mixed state for others.) Bob also
independently chooses an operator,W ∈ S, applies
it to V |ϕ⟩, and sends it back to Alice. Alice applies
V † to WV |ϕ⟩ and sends it to Bob. Last of all, Bob
appliesW † to V †WV |ϕ⟩ and gets the secret,|ϕ⟩.

In this implementation, the eavesdropping as in
the classical implementation does not work well, be-
cause

• nobody can “see” the state of the qubit and cal-
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culate the difference between the two arbitrary
quantum states without destruction; and

• nobody can make a perfect copy of an unknown
quantum state.

However, Eve can make an active attack as Fig. 4,
the man-in-the-middle attack. Eve intercepts the
transmitted qubit from Alice to Bob and gets it back
to Alice directly, pretending she is Bob. Alice opens
her lock and sends stateV †V |ϕ⟩ to Bob. Eve has only
to steal the qubit.

We improve this weak and naive implementation
and introduce the following QSDC protocol.

The model of our protocol
The model of our protocol is defined as follows. There
are two noiseless channels between Alice and Bob,
an unauthenticated quantum channel and an authenti-
cated classical (public) channel. We take no thought
of loss of qubits and assume that the quantum commu-
nication devices, e.g., a photon generator and a detec-
tor, are ideal instruments which don’t make any mis-
takes. Alice and Bob, in advance, agree on a set of
unitary operators,S, such that for any two distinct el-
ementsV andW in S, W †V †WV |ϕ⟩ = eiθI |ϕ⟩ and∑

V ∈S
1
|S|V |ϕ⟩ ⟨ϕ|V † is a maximally mixed state,

Pauli group for example.

The procedure
The numbersk andr are determined in advance based
on the security parameter, wherek is the number of
dummy qubits andr is the number of rounds.

(P1) (Setup)Alice has a secret of a single-qubit state.
Seti = 1.

(P2) (Alice’s encoding phase)If i = r, jump to phase
(P5). Alice chooses an operation,Vi, from S
randomly and applies it to the secret qubit. Al-
ice newly preparesk qubits (we call them dum-
mies), where each is in the random initial state in
the2-dimensional Hilbert space. Alice randomly
picks out one position fromk + 1 positions and
puts the encoded secret there and the dummies in
the other positions at random. Alice sends this
sequence of qubits (the secret and dummies) to
Bob.

(P3) (Bob’s encoding phase)Bob randomly chooses
k + 1 operators fromS and applies them to the
received sequence. He permutes the order of the
sequence and sends it back to Alice. At this mo-
ment, he does not know which operation is ap-
plied to the secret, but, let the operation beWi

for convenience.

(P4) (Detection phase)Alice informs Bob of the re-
ception and the positions of dummies in (P2).
Bob announces his permutation and the operators
applied to dummies through the classical chan-
nel. By using these information, Alice cancels
Bob’s operations for dummies and runs a de-
tection test, which is the measurement of every
dummy with respect to the initial state and its or-
thonormal state. When the answer is not “being
in the initial state,” Alice and Bob abort this pro-
tocol. Otherwise, seti = i+1. Go back to phase
(P2).

(P5) (Alice’s decoding phase)Alice appliesVi =
(Vi−1Vi−2 · · ·V1)† to the secret qubit. Alice pre-
paresk dummies in the random states and ran-
domly picks out one position fromk+1 positions
and puts the secret qubit there and the dummies
in the other positions at random. Alice sends the
sequence to Bob.

(P6) (Detection phase)Bob informs Alice of the re-
ception. Alice announces the position of dum-
mies and their initial states. Bob runs the detec-
tion test similarly to (P4). If any of the dummies
has changed, they abort this protocol.

(P7) (Bob’s decoding phase)Bob appliesWi =
(Wi−1Wi−2 · · ·W1)† to the secret qubit and gets
the original secret.

In our protocol, resending the secret is restricted,
because it is impossible to make a perfect copy of an
unknown quantum state. We leave the issue out of
consideration in this paper.

4 The security analysis of the pro-
posed protocol

Eve cannot directly know the secret by keeping watch
on a transmission channel because every quantum
state on the channel is maximally mixed. In our pro-
tocol, a sender and a receiver do not have a key agree-
ment in advance nor in the process nor afterward, but
instead they individually encode the secret by their
private keys andshuttlethe qubit any number of times.
We consider Eve makes a man-in-the-middle attack
as Fig. 5. In our protocol, encoding is the sequence
of the quantum operations that Alice/Bob chooses
randomly at all rounds but the last, and the subse-
quence does not help to decode at all. So, if once
Bob has applied an operation to the secret, there is
no chance intuitively for Eve to remove the Bob’s op-
eration becauseVr · · ·Vi+1WiVi · · ·V1 |ϕ⟩ is a maxi-
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Figure 5: Eve’s attack

mally mixed state. Eve has to repeats this man-in-the-
middle attack every round. But, in fact, the secret
is always buried in dummies, and thus Eve guesses
the position of the secret qubit and attacks. This is
illustrated by Fig. 5. Eve first entangles the emitted
quantum system from Alice,S0, (consisting of the se-
cret qubit and dummies,) with her arbitrary quantum
systemE0. Then she applies a cloning operator to
combined systemS0E0 and sends systemS0 to Bob.
E0 is not necessarily a single-qubit system, but Eve
can extract a single-qubit clone fromE0. She should
get it back to Alice in the ideal man-in-the-middle at-
tack, however, it would bring the higher detection rate
at the subsequent test by Alice. So she entanglesE1

with S2, applies a unitary operator to them, and sends
systemS2 to Alice.

Before the discussion of security analysis, let us
show the total picture of the rally under the influence
of Eve and define some notations. Fig. 6 illustrates
the flow of a single-qubit.ρi, ρ

′
i, ηi, η

′
i are the mixed

states of a single-qubit on the quantum channel.Vi/Wi

is Alice’s/Bob’s operation. Note thatVr · · ·V1 = I
andWr · · ·W1 = I. Eve keeps watching on every
transmission and can touches any of the qubits. Take
thei-th round transmission as an example. Eve makes
a copy ofρi, defined byµi. Epi,qi means such a noisy
channel, adepolarizing channel, wherepi andqi re-
lates the accuracy of the cloneµi andρi respectively.
Then, Eve returnsη′i to Alice, the mixture ofµi andηi:
η′i = αiµi + (1 − αi)ηi, whereαi is a classical prob-
ability. At the last, Eve makes a clone ofρr, which is
also the clone of|ψ0⟩ in this attack. We call itρE .

µi andρ′i are the two copies ofρi which emerge
from depolarizing channel as seen in Sec.2. Then, by

0ψ 1V
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Figure 6: The procedure

equation (2), they can be rewritten as

µi = (1 − pi)ρi + piI/2,

ρ′i = (1 − qi)ρi + qiI/2.

Thus,

ρi = Viη
′
i−1V

†
i

= Vi{αi−1µi−1 + (1 − αi−1)I/2}V †
i

= Vi{αi−1{(1 − pi−1)ρi−1 + pi−1I/2}
+ (1 − αi−1)I/2}V †

i

= αi−1(1 − pi−1)Viρi−1V
†
i

+ (1 − αi−1(1 − pi−1))I/2,

· · ·

=
i−1
Π

m=1
αm(1 − pm)Vi · · ·V1 |ψ0⟩ ⟨ψ0|V †

1 · · ·V †
i

+ {1−
i−1
Π

m=1
αm(1 − pm)}I/2.

Here, we let|ψi⟩ = Vi · · ·V1 |ψ0⟩ and rewriteρi sim-
ply as follows:

ρi =
i−1
Π

m=1
αm(1 − pm) |ψi⟩ ⟨ψi|

+ {1−
i−1
Π

m=1
αm(1 − pm)}I/2. (5)
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Similarly to ρi, µi can be rewritten with|ψi⟩ as fol-
lows.

µi = (1 − pi)ρi + piI/2

=
i−1
Π

m=1
αm

i
Π

m=1
(1 − pm) |ψi⟩ ⟨ψi|

+ {1−
i−1
Π

m=1
αm

i
Π

m=1
(1 − pm)}I/2. (6)

Now we are ready to go to the security analysis.

Definition 1 A protocol is secure if and only if an
eavesdropper can obtain the information about the
secret message with the fidelity|F (|ψ0⟩ ⟨ψ0| , ρE) −
1/2| ≤ o(2−s), where|ψ0⟩ is the state of the original
secret;ρE is the clone state of|ψ0⟩ Eve reconstructs;
ands is the security parameter the sender decides.

Theorem 2 When Alice and Bob uses2 dummies
and repeat the rally2s times, our protocol is secure
against a man-in-the-middle attack defined above.

Before the proof of this theorem, we introduce
some lemmas.

Lemma 3 If ∃i, F (ρi, ρ
′
i)≥1 − O(δ), thenF (ρi, µi)

≤ 1/2 + O(δ).

(Proof) Let F (ρi, ρ
′
i) = FB andF (ρi, µi) = FE .

By equation (2),FB = 1 − pi/2 ≥ 1 − O(δ) and
FE = 1 − qi/2. By no-cloning inequality (4),√

(1 − FB)(1 − FE) ≥ 1/2− (1−FB)− (1−FE).

Therefore,

O(
√

δ) ≥
√

1 − FB

≥
√

(1 − FB)(1 − FE)
≥ 1/2 − (1 − FB) − (1 − FE)
≥ 1/2 − (1 − FE) − O(δ)

∴ FE ≤ 1/2 + O(δ)

¤

Lemma 4 Let ε and δ be positive real numbers less
than 1. Suppose that for somei, |F (ρi, |ψi⟩ ⟨ψi|) −
1/2| ≤ ε, where|ψi⟩ = Vi · · ·V1 |ψ0⟩. If F (ρi, ρ

′
i) ≥

1 − O(δ), |F (|ψi⟩ ⟨ψi| , µi) − 1/2| ≤ O(δε).

(Proof) By equations (2) and (5), the fidelity be-
tweenρi and|ψi⟩ is given as

F (ρi, |ψi⟩ ⟨ψi|) = 1/2{1 +
i−1
Π

m=1
αm(1 − pm)}.

∴
i−1
Π

m=1
αm(1 − pm)/2 ≤ ε

By lemma 3,F (ρi, µi)− 1/2 = 1/2(1− pi) ≤ O(δ).
Therefore,

F (|ψi⟩ ⟨ψi| , µi) − 1/2

= 1/2
i−1
Π

m=1
αm

i
Π

m=1
(1 − pm)

= 1/2
i−1
Π

m=1
αm(1 − pm) · (1 − pi)

≤ O(δε)

¤

Lemma 5 Suppose thatF (ρi1 , ρ′i1),...,F (ρin , ρ′in) ≥
1 − O(δ), wherei1,...,in are mutually distinct, then
|F (|ψ0⟩ ⟨ψ0| , ρE) − 1/2| ≤ O(δn).

(Proof) Without loss of generality,i1 < i2 < · · · <
in. Suppose|F (ρi1 , |ψi1⟩ ⟨ψi1 |) − 1/2| = ε, then
|F (|ψi1⟩ ⟨ψi1 | , µi1)−1/2| ≤ O(δε), by lemma 4 and

thus1/2
i1−1
Π

m=1
αm

i1
Π

m=1
(1 − pm) ≤ O(δε).

∴ |F (ρi2 , |ψi2⟩ ⟨ψi2 |) − 1/2|

= 1/2{
i2−1
Π

m=1
αm(1 − pm)}

≤ 1/2{
i2−2
Π

m=1
αm(1 − pm)}

≤ · · ·

≤ 1/2{
i1−1
Π

m=1
αm(1 − pm)}

≤ O(δε)

By lemma 4,|F (|ψi2⟩ ⟨ψi2 | , µi2) − 1/2| ≤ O(δ2ε).
By repeated this,|F (|ψin⟩ ⟨ψin | , µin) − 1/2| ≤
O(δn). Therefore,

F (|ψ0⟩ ⟨ψ0| , ρE)−1/2 = 1/2
r−1
Π

m=1
αm(1−pm)

≤ 1/2
in−1
Π

m=1
αm

in
Π

m=1
(1−pm)

≤ O(δn).

¤

Lemma 6 If F (ρi, ρ
′
i) < 1 − Ω(δ), the probability

that Eve passes the detection test by Alice in thei-th
transmission is(1 − Ω(δ))k at most, wherek is the
number of dummy qubits.

(Proof) It should be noted that, in our protocol,
the qubit carrying the secret message is not an ob-
ject of the detection test, but dummy qubit is. First,
let us consider the average probability that Eve passes
the detection test in thei-th transmission per dummy
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qubit. Eve returnsη′i = αiµi + (1 − αi)ηi to Al-
ice and Alice performs the detection test onW †

i η′iWi.
The fidelity betweenW †

i η′iWi andρi corresponds to
the likelihood that Eve passes the detection test.

W †
i η′iWi

= αiW
†
i µiWi + (1 − αi)ρ′i

= αiW
†
i {(1 − pi)ρi + piI/2}Wi

+ (1 − αi){(1 − qi)ρi + qiI/2}
= {αi(1−pi)W

†
i ρiWi+(1−αi(1−pi))I/2}+

{(1−αi)(1−pi)ρi+(1−(1−αi)(1−pi))I/2}
− I/2.

Let λ = αi(1−pi)W
†
i ρiWi+(1−αi(1−pi))I/2 and

ξ = (1− αi)(1− pi)ρi + (1− (1− αi)(1− pi))I/2.
By the linearity,

F (W †
i µiWi, ρi) = F (ρi, λ) + F (ρi, ξ)−F (ρi, I/2).

ConsideringWi ∈ S,

λ =
1
4
Σj{αi(1 − pi)σ

†
jρiσj

+ (1 − αi(1 − pi))I/2}
= I/2.

∴ F (ρi, λ) = 1/2.

F (ρi, ξ) = 1/2 + 1/2(1 − αi)(1 − qi).

∴ F (W †
i µiWi, ρi) = 1/2+1/2(1−αi)(1−qi)−1/2

≤ 1 − qi/2
= F (ρi, ρ

′
i)

≤ 1 − Ω(δ).

Therefore, the probability that all thek dummies pass
the detection test is(1 − Ω(δ))k. ¤

This lemma follows the next corollary.

Corollary 7 If for i = i1, ..., in, F (ρi, ρ
′
i) < 1 −

Ω(δ), the probability that Alice detects Eve through
this protocol is at least1 − (1 − Ω(δ))kn.

Now, we are ready to prove Theorem 2.

(Proof of Theorem 2) First, we consider a eaves-
dropper, Eve, makes an attack such that fori =
i1, ..., ir/2, ... (all mutually distinct),F (ρi, ρ

′
i) ≤ 1 −

Ω(1/s). Alice detects Eve by the end with probabil-
ity 1 − (1 − Ω(δ))kn/2 at least, by Corollary 7, and
the protocol aborts in the middle. In this case, it is
clear thatF (|ψ0⟩ ⟨ψ0| , ρE) = 1/2. Thus, this Eve
can obtain the information about the secret with the
extremely low probability averagely.

Then, Eve takes an attack such that fori =
i1, ..., ir/2, ... (all mutually distinct),F (ρi, ρ

′
i) ≥ 1 −

O(1/s). By lemma 5,

|F (|ψ0⟩ ⟨ψ0| , ρE) − 1/2|
≤ O(s−r′)

≤ O(s−r/2)
≤ O(2−s).
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