A characterization of bent functions on $n+1$ variables ${ }^{1}$

JOAN-JOSEP CLIMENT ${ }^{(\mathrm{a})(\mathrm{b}) 2}$, \quad FRANCISCO J. GARCÍA ${ }^{(\mathrm{c})}$, VERÓNICA REQUENA ${ }^{(\mathrm{b}) 3}$
${ }^{(a)}$ Institut Universitari d'Investigació Informàtica
${ }^{(b)}$ Departament de Ciència de la Computació i Intel-ligència Artificial
${ }^{(c)}$ Departament de Fonaments de l'Anàlisi Econòmica
Universitat d'Alacant
Campus de Sant Vicent del Raspeig
Ap. correus 99, E-03080 Alacant
SPAIN

Abstract

In this paper we construct a Boolean function of $n+1$ variables starting with two Boolean functions of n variables and we we introduce a necessary and sufficient condition in order to new function be a bent function when n is a positive odd integer.

Key-words: Boolean function, bent function, balanced function, linear function, minterm, nonlinearity.

1 Introduction

Boolean functions are used in cryptography [3, 5], coding theory $[2,9]$, among others. Boolean functions in cryptography are the basic elements and should have high nonlinearity in order to prevent attacks based on linear approximation. For n a positive even integer, Boolean functions achieving the maximum nonlinearity are called bent functions [8, 11].

There are different ways to obtain bent functions, most of them are based on the algebraic normal form of a Boolean function, see, for example, [1, 4, 10, 12, 13, 14]. Climent, García, and Requena $[6,7]$ using the concept of minterm, presented some constructions in order to obtain a bent function of $n+2$ variables starting with some bent functions of n variables (with n a positive even integer).

The rest of the paper is organized as follows. In Section 2 we introduce some basic concepts and the notation we will use in the paper. In Section 3 we consider two Boolean functions of n variables and introduce a necessary and sufficient condition in order to a Boolean function of $n+1$ variables (with n a positive odd integer) be a bent function, and then, we derive some properties. Finally, in Section 4 we present some conclusions.

2 Preliminaries

Let n be a positive integer. It is well-known that \mathbb{Z}_{2}^{n} is a linear space over \mathbb{Z}_{2} with the addition \oplus given
by

$$
\boldsymbol{a} \oplus \boldsymbol{b}=\left(a_{1} \oplus b_{1}, a_{2} \oplus b_{2}, \ldots, a_{n} \oplus b_{n}\right)
$$

where $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, and the addition $a_{i} \oplus b_{i}$, for $i=1,2, \ldots, n$, is the addition modulo 2 in \mathbb{Z}_{2}. In \mathbb{Z}_{2}^{n} we also consider the inner product

$$
\langle\boldsymbol{a}, \boldsymbol{b}\rangle=a_{1} b_{1} \oplus a_{2} b_{2} \oplus \cdots \oplus a_{n} b_{n} .
$$

We call a Boolean function of n variables any map $f: \mathbb{Z}_{2}^{n} \longrightarrow \mathbb{Z}_{2}$. For $i=0,1, \ldots, 2^{n}-1$, let e_{i} be the vector in \mathbb{Z}_{2}^{n} corresponding to the binary expansion of the integer i. The truth table of a Boolean function $f(\boldsymbol{x})$ of n variables is the $(0,1)$-sequence

$$
\boldsymbol{\xi}_{f}=\left(f\left(e_{\mathbf{0}}\right), f\left(e_{\mathbf{1}}\right), \ldots, f\left(e_{\mathbf{2}^{n}-\mathbf{1}}\right)\right) .
$$

The set \mathcal{B}_{n} of all Boolean functions of n variables is also a linear space with the addition $f \oplus g$ of $f, g \in \mathcal{B}_{n}$ given by

$$
(f \oplus g)(\boldsymbol{x})=f(\boldsymbol{x}) \oplus g(\boldsymbol{x}) .
$$

We say that a Boolean function $f(\boldsymbol{x})$ of n variables is an affine function if it takes the form

$$
f(\boldsymbol{x})=\langle\boldsymbol{a}, \boldsymbol{x}\rangle \oplus b
$$

where $\boldsymbol{a} \in \mathbb{Z}_{2}^{n}$ and $b \in \mathbb{Z}_{2}$. In addition, we call f a linear function if $b=0$. In the rest of the paper we

[^0]write $l_{\boldsymbol{a}}(\boldsymbol{x})$ for the linear function defined by $\boldsymbol{a} \in \mathbb{Z}_{2}^{n}$, that is, $l_{\boldsymbol{a}}(\boldsymbol{x})=\langle\boldsymbol{a}, \boldsymbol{x}\rangle$.

The Hamming weight of a $(0,1)$-sequence $\boldsymbol{\alpha}$, denoted by $w(\boldsymbol{\alpha})$, is the number of 1 s in $\boldsymbol{\alpha}$. A $(0,1)$ sequence is balanced if it contains an equal number of 0 s and 1 s . The Hamming distance between two $(0,1)$-sequences $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, denoted by $d(\boldsymbol{\alpha}, \boldsymbol{\beta})$, is the number of positions where the two sequences differ, that is $d(\boldsymbol{\alpha}, \boldsymbol{\beta})=w(\boldsymbol{\alpha} \oplus \boldsymbol{\beta})$.

For two Boolean functions $f(\boldsymbol{x})$ and $g(\boldsymbol{x})$ of n variables we have that $d(f, g)=d\left(\boldsymbol{\xi}_{f}, \boldsymbol{\xi}_{g}\right)$. Also, we have that $w(f)=w\left(\boldsymbol{\xi}_{f}\right)$ and, therefore, $f(\boldsymbol{x})$ is balanced if $\boldsymbol{\xi}_{f}$ is balanced; that is, if $w(f)=2^{n-1}$. In this paper we consider 0 and 1 as elements in \mathbb{Z}_{2} or in \mathbb{Z} as we need, so

$$
w(f)=\sum_{\boldsymbol{x} \in \mathbb{Z}_{2}^{n}} f(\boldsymbol{x})
$$

The nonlinearity NL of a Boolean function $f(\boldsymbol{x})$ of n variables is given by

$$
\mathrm{NL}(f)=\min \left\{d(f, \varphi) \mid \varphi \in \mathcal{A}_{n}\right\}
$$

where \mathcal{A}_{n} is the set of all affine functions; it is well known (see [13]) that

$$
\mathrm{NL}(f) \leq 2^{n-1}-2^{\frac{n}{2}-1}
$$

The Boolean functions that attains the maximum nonlinearity are called bent functions (see [13]), in this case, n must be even.

The following result (see $[12,13]$), that we quote for further references, give us a characterization of bent functions.

Theorem 1: Let $f(\boldsymbol{x})$ be a Boolean function of n variables (with n even). The following statements are equivalent.

1. $f(\boldsymbol{x})$ is a bent function,
2. $f(\boldsymbol{x}) \oplus f(\boldsymbol{a} \oplus \boldsymbol{x})$ is balanced for all $\boldsymbol{a} \in \mathbb{Z}_{2}^{n}$ with $\boldsymbol{a} \neq \mathbf{0}$.
3. $w\left(f \oplus l_{\boldsymbol{a}}\right)=2^{n-1} \pm 2^{\frac{n}{2}-1}$ for all $\boldsymbol{a} \in \mathbb{Z}_{2}^{n}$.

As a consequence of this theorem, if $f(\boldsymbol{x})$ is a bent function, then the number of 1 s of its truth table is $2^{n-1} \pm 2^{\frac{n}{2}-1}$, and consequently, $w(f)=2^{n-1} \pm 2^{\frac{n}{2}-1}$.

A minterm on n variables $x_{1}, x_{2}, \ldots, x_{n}$ is a Boolean function

$$
\begin{aligned}
& m_{\left(u_{1}, u_{2}, \ldots, u_{n}\right)}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\left(1 \oplus u_{1} \oplus x_{1}\right)\left(1 \oplus u_{2} \oplus x_{2}\right) \cdots\left(1 \oplus u_{n} \oplus x_{n}\right)
\end{aligned}
$$

We will write $m_{i}(\boldsymbol{x})$ instead of $m_{\boldsymbol{e}_{i}}(\boldsymbol{x})$ and, therefore, $m_{i}(\boldsymbol{x})=1$ if only if $\boldsymbol{x}=\boldsymbol{e}_{i}$. So, the truth table of $m_{i}(\boldsymbol{x})$ has a 1 in the i th position and 0 elsewhere.

It is well known that any Boolean function f can be expressed as

$$
f(\boldsymbol{x})=\bigoplus_{i \in M} m_{i}(\boldsymbol{x})
$$

for a subset M of $\mathbb{Z}_{2^{n}}$, that we call the support of f, and defined as

$$
M=\left\{i \in \mathbb{Z}_{2}^{n} \mid f\left(\boldsymbol{e}_{i}\right)=1\right\}
$$

So, $w(f)=\operatorname{card}(M)$.
Next results, whose proof is immediate, that we will use later, establishes that for each minterm of n variables we can obtain two minterms of $n+1$ variables.

Lemma 1: Assume that $a \in \mathbb{Z}_{2^{n}}$ and $b \in \mathbb{Z}_{2}$. If $m_{a}(\boldsymbol{x})$ is a minterm of n variables and $m_{b}(y)$ is a minterm of one variable, then $m_{c}(y, \boldsymbol{x})=$ $m_{b}(y) m_{a}(\boldsymbol{x})$ is a minterm of $n+1$ variables, where $c=b \cdot 2^{n}+a \in \mathbb{Z}_{2^{n+1}}$.

3 Main results

In the rest of the paper we assume that $f_{0}(\boldsymbol{x})$ and $f_{1}(\boldsymbol{x})$ are two Boolean functions of n variables, and let $f(y, \boldsymbol{x})$ be the Boolean function of $n+1$ variables given by

$$
\begin{equation*}
f(y, \boldsymbol{x})=m_{0}(y) f_{0}(\boldsymbol{x}) \oplus m_{1}(y) f_{1}(\boldsymbol{x}) \tag{1}
\end{equation*}
$$

If M_{0} and M_{1} are the supports of $f_{0}(\boldsymbol{x})$ and $f_{1}(\boldsymbol{x})$ respectively, then by lemma 1 we have that

$$
M_{0} \cup\left\{2^{n}+a \mid a \in M_{1}\right\}
$$

is the support of $f(y, \boldsymbol{x})$ and, consequently,

$$
w(f)=w\left(f_{0}\right)+w\left(f_{1}\right)
$$

because $M_{0} \cap\left\{2^{n}+a \mid a \in M_{1}\right\}=\emptyset$.
Next result will be used in the proof of the main theorem of this paper (see Theorem 2 below).

Lemma 2: Let $f_{0}(\boldsymbol{x})$ and $f_{1}(\boldsymbol{x})$ be two Boolean functions of n variables and consider the Boolean function $f(y, \boldsymbol{x})$ of $n+1$ variables defined by expression (1). If $\boldsymbol{a} \in \mathbb{Z}_{2}^{n}$ and $b \in \mathbb{Z}_{2}$, then

$$
\begin{aligned}
& w\left(f \oplus l_{(b, \boldsymbol{a})}\right) \\
& = \begin{cases}w\left(f_{0} \oplus l_{\boldsymbol{a}}\right)+w\left(f_{1} \oplus l_{\boldsymbol{a}}\right), & \text { if } b=0 \\
w\left(f_{0} \oplus l_{\boldsymbol{a}}\right)+2^{n}-w\left(f_{1} \oplus l_{\boldsymbol{a}}\right), & \text { if } b=1\end{cases}
\end{aligned}
$$

y	\boldsymbol{x}	$m_{0}(y)$	$m_{1}(y)$	$f_{0}(\boldsymbol{x})$	$f_{1}(\boldsymbol{x})$	$b y$	$\lambda_{\boldsymbol{a}}(\boldsymbol{x})$	$f(y, \boldsymbol{x}) \oplus l_{(b, \boldsymbol{a})}(y, \boldsymbol{x})$
$\mathbf{0}$	$\boldsymbol{\tau}$	$\mathbf{1}$	$\mathbf{0}$	$\boldsymbol{\xi}_{0}$	$\boldsymbol{\xi}_{1}$	$\mathbf{0}$	$\boldsymbol{\Lambda}_{\boldsymbol{a}}$	$\boldsymbol{\xi}_{0} \oplus \boldsymbol{\Lambda}_{\boldsymbol{a}}$
$\mathbf{1}$	$\boldsymbol{\tau}$	$\mathbf{0}$	$\mathbf{1}$	$\boldsymbol{\xi}_{0}$	$\boldsymbol{\xi}_{1}$	$b \mathbf{1}$	$\boldsymbol{\Lambda}_{\boldsymbol{a}}$	$\boldsymbol{\xi}_{1} \oplus b \mathbf{1} \oplus \boldsymbol{\Lambda}_{\boldsymbol{a}}$

Table 1: Truth table of $f(y, \boldsymbol{x}) \oplus l_{(b, \boldsymbol{a})}(y, \boldsymbol{x})$

$b=0$	$b=1$
$\boldsymbol{\xi}_{0} \oplus \boldsymbol{\Lambda}_{\boldsymbol{a}}$	$\boldsymbol{\xi}_{0} \oplus \boldsymbol{\Lambda}_{\boldsymbol{a}}$
$\boldsymbol{\xi}_{1} \oplus \boldsymbol{\Lambda}_{\boldsymbol{a}}$	$\boldsymbol{\xi}_{1} \oplus \mathbf{1} \oplus \boldsymbol{\Lambda}_{\boldsymbol{a}}$

Table 2: Truth table of $f(y, \boldsymbol{x}) \oplus l_{(b, \boldsymbol{a})}(y, \boldsymbol{x})$ for the different values of b

Proof: From expression (1) and the definition of $l_{(b, \boldsymbol{a})}(y, \boldsymbol{x})$ we have that

$$
\begin{aligned}
& f(y, \boldsymbol{x}) \oplus l_{(b, \boldsymbol{a})}(y, \boldsymbol{x}) \\
& =m_{0}(y) f_{0}(\boldsymbol{x}) \oplus m_{1}(y) f_{1}(\boldsymbol{x}) \oplus b y \oplus l_{\boldsymbol{a}}(\boldsymbol{x})
\end{aligned}
$$

So, if $\mathbf{0}$ and $\mathbf{1}$ are the $2^{n} \times 1$ arrays with all entries equal to 0 and 1 respectively; $\boldsymbol{\tau}$ is the $2^{n} \times n$ array whose i th row is $e_{i} ; \boldsymbol{\xi}_{0}$ and $\boldsymbol{\xi}_{1}$ are the truth tables of $f_{0}(\boldsymbol{x})$ and $f_{1}(\boldsymbol{x})$ respectively; and $\boldsymbol{\Lambda}_{\boldsymbol{a}}$ is the truth table of $l_{\boldsymbol{a}}(\boldsymbol{x})$, then the last column of Table 1 shows the truth table of the Boolean function $f(y, \boldsymbol{x}) \oplus l_{(b, \boldsymbol{a})}(y, \boldsymbol{x})$.

Now, the result follows clearly from Table 2 which represents the two blocks of the truth table of the Boolean function $f(y, \boldsymbol{x}) \oplus l_{(b, \boldsymbol{a})}(y, \boldsymbol{x})$ for the different values of b.

From now to the end of the paper, we assume that n is odd, and consequently, that $n+1$ is even. Next theorem introduces a necessary and sufficient condition so that the Boolean function $f(y, \boldsymbol{x})$ defined by expression (1) is bent.

Theorem 2: Let $f_{0}(\boldsymbol{x})$ and $f_{1}(\boldsymbol{x})$ be two Boolean functions of n variables. The Boolean function $f(y, \boldsymbol{x})$ of $n+1$ variables defined by expression (1) is bent if and only if for all $\boldsymbol{a} \in \mathbb{Z}_{2}^{n}$ one of the two following conditions hold:

1. $w\left(f_{0} \oplus l_{\boldsymbol{a}}\right)=2^{n-1} \pm 2^{\frac{n-1}{2}}$ and $w\left(f_{1} \oplus l_{\boldsymbol{a}}\right)=$
2^{n-1},
2. $w\left(f_{0} \oplus l_{\boldsymbol{a}}\right)=2^{n-1}$ and $w\left(f_{1} \oplus l_{\boldsymbol{a}}\right)=2^{n-1} \pm$
$2^{\frac{n-1}{2}}$.

Proof: Assume that $f(y, \boldsymbol{x})$ is a bent function. Then, according to Theorem 1 we have that

$$
w\left(f \oplus l_{(b, a)}\right)=2^{n} \pm 2^{\frac{n-1}{2}}
$$

for all $(b, \boldsymbol{a}) \in \mathbb{Z}_{2}^{n+1}$.
Assume first that $w\left(f \oplus l_{(b, a)}\right)=2^{n}+2^{\frac{n-1}{2}}$ when $b=0,1$. Then, by Lemma 2,

$$
\begin{align*}
& 2^{n}+2^{\frac{n-1}{2}}=w\left(f_{0} \oplus l_{\boldsymbol{a}}\right)+w\left(f_{1} \oplus l_{\boldsymbol{a}}\right), \tag{2}\\
& 2^{n}+2^{\frac{n-1}{2}}=w\left(f_{0} \oplus l_{\boldsymbol{a}}\right)+2^{n}-w\left(f_{1} \oplus l_{\boldsymbol{a}}\right) . \tag{3}
\end{align*}
$$

If we add equalities (2) and (3) we obtain that

$$
2\left(2^{n}+2^{\frac{n-1}{2}}\right)=2 w\left(f_{0} \oplus l_{\boldsymbol{a}}\right)+2^{n}
$$

and consequently,

$$
w\left(f_{0} \oplus l_{\boldsymbol{a}}\right)=2^{n-1}+2^{\frac{n-1}{2}}
$$

If instead to add equalities (2) and (3) we substract one to the other, then we obtain $w\left(f_{1} \oplus l_{\boldsymbol{a}}\right)=2^{n-1}$.

If we assume that $w\left(f \oplus l_{(b, a)}\right)=2^{n}-2^{\frac{n-1}{2}}$ when $b=0,1$, then, by a similar argument, we obtain that
$w\left(f_{0} \oplus l_{\boldsymbol{a}}\right)=2^{n-1}-2^{\frac{n-1}{2}} \quad$ and $\quad w\left(f_{1} \oplus l_{\boldsymbol{a}}\right)=2^{n-1}$.
Finally, if we assume that $w\left(f \oplus l_{(b, \boldsymbol{a})}\right)=2^{n}+$ $2^{\frac{n-1}{2}}$ when $b=0$ and $w\left(f \oplus l_{(b, a)}\right)=2^{n}-2^{\frac{n-1}{2}}$ when $b=1$, or $w\left(f \oplus l_{(b, \boldsymbol{a})}\right)=2^{n}-2^{\frac{n-1}{2}}$ when $b=0$ and $w\left(f \oplus l_{(b, a)}\right)=2^{n}+2^{\frac{n-1}{2}}$ when $b=1$, then, by a similar argument, we obtain the equalities of part 2 .

Conversely, assume first that condition 1 holds. If $b=0$, then by Lemma 2

$$
\begin{aligned}
w\left(f \oplus l_{(b, \boldsymbol{a})}\right) & =w\left(f_{0} \oplus l_{\boldsymbol{a}}\right)+w\left(f_{1} \oplus l_{\boldsymbol{a}}\right) \\
& =2^{n-1} \pm 2^{\frac{n-1}{2}}+2^{n-1} \\
& =2^{n} \pm 2^{\frac{n-1}{2}} .
\end{aligned}
$$

If $b=1$, then, again by Lemma 2

$$
\begin{aligned}
w\left(f \oplus l_{(b, \boldsymbol{a})}\right) & =w\left(f_{0} \oplus l_{\boldsymbol{a}}\right)+2^{n}-w\left(f_{1} \oplus l_{\boldsymbol{a}}\right) \\
& =2^{n-1} \pm 2^{\frac{n-1}{2}}+2^{n}-2^{n-1} \\
& =2^{n} \pm 2^{\frac{n-1}{2}}
\end{aligned}
$$

Consequently, by Theorem $1, f(y, \boldsymbol{x})$ is a bent function.

Now, if condition 2 holds, by a similar argument, we also obtain that $f(y, \boldsymbol{x})$ is a bent function.

As an immediate consequence of the previous theorem we have the following results.

Corollary 1: Let $f_{0}(\boldsymbol{x})$ and $f_{1}(\boldsymbol{x})$ be two Boolean functions of n variables. If the Boolean function $f(y, \boldsymbol{x})$ of $n+1$ variables defined by expression (1) is bent, then only one of the two functions $f_{0}(\boldsymbol{x})$ and $f_{1}(\boldsymbol{x})$ is balanced.

Corollary 2: Let $f_{0}(\boldsymbol{x})$ and $f_{1}(\boldsymbol{x})$ be two Boolean functions of n variables. If the Boolean function $f(y, \boldsymbol{x})$ of $n+1$ variables defined by expression (1) is bent, then

$$
f_{0}(\boldsymbol{a} \oplus \boldsymbol{x}) \oplus f_{1}(\boldsymbol{x}) \quad \text { and } \quad f_{0}(\boldsymbol{x}) \oplus f_{1}(\boldsymbol{a} \oplus \boldsymbol{x})
$$

are balanced functions for all $\boldsymbol{a} \in \mathbb{Z}_{2}^{n}$.
Observe that if we take $\boldsymbol{a}=\mathbf{0}$ in Corollary 2, then the Boolean function $f_{0}(\boldsymbol{x}) \oplus f_{1}(\boldsymbol{x})$ is balanced.

4 Conclusion

Starting with two Boolean functions $f_{0}(\boldsymbol{x})$ and $f_{1}(\boldsymbol{x})$ of n variables (with n a positive odd integer), we define the Boolean function

$$
f(y, \boldsymbol{x})=m_{0}(y) f_{0}(\boldsymbol{x}) \oplus m_{1}(y) f_{1}(\boldsymbol{x})
$$

of $n+1$ variables. Then, we introduce a necessary and sufficient condition in order to $f(y, \boldsymbol{x})$ is a bent functions and we derive some properties.

References:

[1] C. M. Adams and S. E. Tavares. Generating and counting binary bent sequences. IEEE Transactions on Information Theory, 35(6): 1170-1173 (1990).
[2] Y. Borissov, A. Braeken, S. Nikova and B. Preneel. On the covering radii of binary Reed-Muller codes in the set of resilient Boolean functions. IEEE Transactions on Information Theory, 51(3): 1182-1189 (2005).
[3] A. Braeken, V. Nikov, S. Nikova and B. Preneel. On Boolean functions with generalized cryptographic properties. In A. Canteaut and K. Viswanathan (editors), Progress in Cryptology - INDOCRYPT 2004, volume 3348 of Lecture Notes in Computer Science, pages 120-135. Springer-Verlag, Berlin, 2004.
[4] C. Carlet and J. L. Yucas. Piecewise constructions of bent and almost optimal Boolean functions. Designs, Codes and Cryptography, 37: 449-464 (2005).
[5] C. Charnes, M. Rötteler and T. Beth. Homogeneous bent functions, invariants, and designs. Designs, Codes and Cryptography, 26: 139-154 (2002).
[6] J.-J. Climent, F. J. García and V. ReQUENA. An iterative method to construct new bent funcions from old bent functions. Transactions on Information Science and Applications, 4(2): 245-250 (2007).
[7] J.-J. Climent, F. J. García and V. ReQUENA. Iterative methods to construct boolean bent funcions. Transactions on Information Science and Applications, 4(2): 251-256 (2007).
[8] J. F. Dillon. Elementary Hadamard Difference Sets. PhD Thesis, University of Maryland, 1974.
[9] K. Kurosawa, T. Iwata and T. Yoshiwara. New covering radius of Reed-Muller codes for t-resilient functions. IEEE Transactions on Information Theory, 50(3): 468-475 (2004).
[10] W. Meier and O. Staffelbach. Nonlinearity criteria for cryptographic functions. In J. QUISQUATER and J. VANDEWALLE (editors), Advances in Cryptology - EUROCRYPT'89, volume 434 of Lecture Notes in Computer Science, pages 549-562. Springer-Verlag, Berlin, 1998.
[11] O. S. Rothaus. On "bent" functions. Journal of Combinatorial Theory (Series A), 20: 300305 (1976).
[12] J. SEbERRY and X.-M. Zhang. Constructions of bent functions from two known bent functions. Australasian Journal of Combinatorics, 9: 21-35 (1994).
[13] J. Seberry, X.-M. Zhang and Y. Zheng. Nonlinearity and propagation characteristics of balanced Boolean functions. Information and Computation, 119: 1-13 (1995).
[14] N. Y. Yu and G. Gong. Constructions of quadratic bent functions in polynomial forms. IEEE Transactions on Information Theory, 52(7): 3291-3299 (2006).

[^0]: ${ }^{1}$ This work was partially supported by Spanish grant MTM2005-05759.
 ${ }^{2}$ The work of this author was partially developed during a stay at the University of Zurich supportted by Spanish grant PR2007-0181 of the Secretaría de Estado de Universidades e Investigación of the Ministerio de Educación y Ciencia.
 ${ }^{3}$ The work of this author was supported by a grant of the Vicerectorat d'Investigació, Desenvolupament i Innovació of the Universitat d'Alacant for PhD students and was partially developed during a stay at the University of Zurich also supported by the Vicerectorat d'Investigació, Desenvolupament i Innovació of the Universitat d'Alacant.

