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Abstract: In this paper we construct a Boolean function of n+1 variables starting with two Boolean functions of
n variables and we we introduce a necessary and sufficient condition in order to new function be a bent function
when n is a positive odd integer.
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1 Introduction
Boolean functions are used in cryptography [3, 5],

coding theory [2, 9], among others. Boolean functions
in cryptography are the basic elements and should
have high nonlinearity in order to prevent attacks
based on linear approximation. For n a positive even
integer, Boolean functions achieving the maximum
nonlinearity are called bent functions [8, 11].

There are different ways to obtain bent func-
tions, most of them are based on the algebraic nor-
mal form of a Boolean function, see, for example,
[1, 4, 10, 12, 13, 14]. Climent, García, and Requena
[6, 7] using the concept of minterm, presented some
constructions in order to obtain a bent function of n+2
variables starting with some bent functions of n vari-
ables (with n a positive even integer).

The rest of the paper is organized as follows. In
Section 2 we introduce some basic concepts and the
notation we will use in the paper. In Section 3 we
consider two Boolean functions of n variables and in-
troduce a necessary and sufficient condition in order
to a Boolean function of n+1 variables (with n a pos-
itive odd integer) be a bent function, and then, we de-
rive some properties. Finally, in Section 4 we present
some conclusions.

2 Preliminaries
Let n be a positive integer. It is well-known that

Zn
2 is a linear space over Z2 with the addition ⊕ given

by

a⊕ b = (a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn)

where a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn),
and the addition ai ⊕ bi, for i = 1, 2, . . . , n, is the
addition modulo 2 in Z2. In Zn

2 we also consider the
inner product

〈a, b〉 = a1b1 ⊕ a2b2 ⊕ · · · ⊕ anbn.

We call a Boolean function of n variables any
map f : Zn

2 −→ Z2. For i = 0, 1, . . . , 2n − 1, let
ei be the vector in Zn

2 corresponding to the binary ex-
pansion of the integer i. The truth table of a Boolean
function f(x) of n variables is the (0, 1)-sequence

ξf = (f(e0), f(e1), . . . , f(e2n−1)).

The set Bn of all Boolean functions of n vari-
ables is also a linear space with the addition f ⊕ g
of f, g ∈ Bn given by

(f ⊕ g)(x) = f(x)⊕ g(x).

We say that a Boolean function f(x) of n vari-
ables is an affine function if it takes the form

f(x) = 〈a,x〉 ⊕ b,

where a ∈ Zn
2 and b ∈ Z2. In addition, we call f a

linear function if b = 0. In the rest of the paper we
1This work was partially supported by Spanish grant MTM2005-05759.
2The work of this author was partially developed during a stay at the University of Zurich supportted by Spanish grant PR2007-0181

of the Secretaría de Estado de Universidades e Investigación of the Ministerio de Educación y Ciencia.
3The work of this author was supported by a grant of the Vicerectorat d’Investigació, Desenvolupament i Innovació of the Universitat

d’Alacant for PhD students and was partially developed during a stay at the University of Zurich also supported by the Vicerectorat
d’Investigació, Desenvolupament i Innovació of the Universitat d’Alacant.

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007     44



write la(x) for the linear function defined by a ∈ Zn
2 ,

that is, la(x) = 〈a,x〉.
The Hamming weight of a (0, 1)-sequence α, de-

noted by w(α), is the number of 1s in α. A (0, 1)-
sequence is balanced if it contains an equal number
of 0s and 1s. The Hamming distance between two
(0, 1)-sequences α and β, denoted by d(α,β), is the
number of positions where the two sequences differ,
that is d(α,β) = w(α⊕ β).

For two Boolean functions f(x) and g(x) of n
variables we have that d(f, g) = d(ξf , ξg). Also, we
have that w(f) = w(ξf ) and, therefore, f(x) is bal-
anced if ξf is balanced; that is, if w(f) = 2n−1. In
this paper we consider 0 and 1 as elements in Z2 or in
Z as we need, so

w(f) =
∑

x∈Zn
2

f(x).

The nonlinearity NL of a Boolean function f(x)
of n variables is given by

NL(f) = min{d(f, ϕ) | ϕ ∈ An}

where An is the set of all affine functions; it is well
known (see [13]) that

NL(f) ≤ 2n−1 − 2
n
2
−1.

The Boolean functions that attains the maximum non-
linearity are called bent functions (see [13]), in this
case, n must be even.

The following result (see [12, 13]), that we quote
for further references, give us a characterization of
bent functions.

Theorem 1: Let f(x) be a Boolean function of n
variables (with n even). The following statements are
equivalent.

1. f(x) is a bent function,

2. f(x) ⊕ f(a ⊕ x) is balanced for all a ∈ Zn
2

with a 6= 0.

3. w(f ⊕ la) = 2n−1 ± 2
n
2
−1 for all a ∈ Zn

2 .

As a consequence of this theorem, if f(x) is a bent
function, then the number of 1s of its truth table is
2n−1±2

n
2
−1, and consequently, w(f) = 2n−1±2

n
2
−1.

A minterm on n variables x1, x2, . . . , xn is a
Boolean function

m(u1,u2,...,un)(x1, x2, . . . , xn)

= (1⊕ u1 ⊕ x1)(1⊕ u2 ⊕ x2) · · · (1⊕ un ⊕ xn).

We will write mi(x) instead of mei(x) and, therefore,
mi(x) = 1 if only if x = ei. So, the truth table of
mi(x) has a 1 in the ith position and 0 elsewhere.

It is well known that any Boolean function f can
be expressed as

f(x) =
⊕
i∈M

mi(x)

for a subset M of Z2n , that we call the support of f ,
and defined as

M = {i ∈ Zn
2 | f(ei) = 1}.

So, w(f) = card(M).
Next results, whose proof is immediate, that we

will use later, establishes that for each minterm of n
variables we can obtain two minterms of n + 1 vari-
ables.

Lemma 1: Assume that a ∈ Z2n and b ∈ Z2.
If ma(x) is a minterm of n variables and mb(y)
is a minterm of one variable, then mc(y, x) =
mb(y)ma(x) is a minterm of n + 1 variables, where
c = b · 2n + a ∈ Z2n+1 .

3 Main results
In the rest of the paper we assume that f0(x) and

f1(x) are two Boolean functions of n variables, and
let f(y, x) be the Boolean function of n + 1 variables
given by

f(y, x) = m0(y)f0(x)⊕m1(y)f1(x). (1)

If M0 and M1 are the supports of f0(x) and f1(x)
respectively, then by lemma 1 we have that

M0 ∪ {2n + a | a ∈ M1}

is the support of f(y, x) and, consequently,

w(f) = w(f0) + w(f1)

because M0 ∩ {2n + a | a ∈ M1} = ∅.
Next result will be used in the proof of the main

theorem of this paper (see Theorem 2 below).

Lemma 2: Let f0(x) and f1(x) be two Boolean
functions of n variables and consider the Boolean
function f(y, x) of n + 1 variables defined by expres-
sion (1). If a ∈ Zn

2 and b ∈ Z2, then

w(f ⊕ l(b,a))

=

{
w(f0 ⊕ la) + w(f1 ⊕ la), if b = 0,

w(f0 ⊕ la) + 2n − w(f1 ⊕ la), if b = 1.
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y x m0(y) m1(y) f0(x) f1(x) by λa(x) f(y, x)⊕ l(b,a)(y, x)
0 τ 1 0 ξ0 ξ1 0 Λa ξ0 ⊕Λa

1 τ 0 1 ξ0 ξ1 b1 Λa ξ1 ⊕ b1⊕Λa

Table 1: Truth table of f(y, x)⊕ l(b,a)(y, x)

b = 0 b = 1
ξ0 ⊕Λa ξ0 ⊕Λa

ξ1 ⊕Λa ξ1 ⊕ 1⊕Λa

Table 2: Truth table of f(y, x)⊕ l(b,a)(y, x) for the different values of b

PROOF: From expression (1) and the definition of
l(b,a)(y, x) we have that

f(y, x)⊕ l(b,a)(y, x)

= m0(y)f0(x)⊕m1(y)f1(x)⊕ by ⊕ la(x).

So, if 0 and 1 are the 2n × 1 arrays with all en-
tries equal to 0 and 1 respectively; τ is the 2n × n
array whose ith row is ei; ξ0 and ξ1 are the truth
tables of f0(x) and f1(x) respectively; and Λa is
the truth table of la(x), then the last column of Ta-
ble 1 shows the truth table of the Boolean function
f(y, x)⊕ l(b,a)(y, x).

Now, the result follows clearly from Table 2 which
represents the two blocks of the truth table of the
Boolean function f(y, x)⊕ l(b,a)(y, x) for the differ-
ent values of b. �

From now to the end of the paper, we assume that
n is odd, and consequently, that n + 1 is even. Next
theorem introduces a necessary and sufficient condi-
tion so that the Boolean function f(y, x) defined by
expression (1) is bent.

Theorem 2: Let f0(x) and f1(x) be two Boolean
functions of n variables. The Boolean function
f(y, x) of n + 1 variables defined by expression (1)
is bent if and only if for all a ∈ Zn

2 one of the two
following conditions hold:

1. w(f0 ⊕ la) = 2n−1 ± 2
n−1

2 and w(f1 ⊕ la) =
2n−1,

2. w(f0 ⊕ la) = 2n−1 and w(f1 ⊕ la) = 2n−1 ±
2

n−1
2 .

PROOF: Assume that f(y, x) is a bent function.
Then, according to Theorem 1 we have that

w(f ⊕ l(b,a)) = 2n ± 2
n−1

2

for all (b, a) ∈ Zn+1
2 .

Assume first that w(f⊕ l(b,a)) = 2n +2
n−1

2 when
b = 0, 1. Then, by Lemma 2,

2n + 2
n−1

2 = w(f0 ⊕ la) + w(f1 ⊕ la), (2)

2n + 2
n−1

2 = w(f0 ⊕ la) + 2n − w(f1 ⊕ la). (3)

If we add equalities (2) and (3) we obtain that

2
(
2n + 2

n−1
2

)
= 2w(f0 ⊕ la) + 2n

and consequently,

w(f0 ⊕ la) = 2n−1 + 2
n−1

2 .

If instead to add equalities (2) and (3) we substract
one to the other, then we obtain w(f1 ⊕ la) = 2n−1.

If we assume that w(f⊕l(b,a)) = 2n−2
n−1

2 when
b = 0, 1, then, by a similar argument, we obtain that

w(f0⊕la) = 2n−1−2
n−1

2 and w(f1⊕la) = 2n−1.

Finally, if we assume that w(f ⊕ l(b,a)) = 2n +

2
n−1

2 when b = 0 and w(f⊕l(b,a)) = 2n−2
n−1

2 when

b = 1, or w(f ⊕ l(b,a)) = 2n − 2
n−1

2 when b = 0 and

w(f ⊕ l(b,a)) = 2n + 2
n−1

2 when b = 1, then, by a
similar argument, we obtain the equalities of part 2.

Conversely, assume first that condition 1 holds. If
b = 0, then by Lemma 2

w(f ⊕ l(b,a)) = w(f0 ⊕ la) + w(f1 ⊕ la)

= 2n−1 ± 2
n−1

2 + 2n−1

= 2n ± 2
n−1

2 .
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If b = 1, then, again by Lemma 2

w(f ⊕ l(b,a)) = w(f0 ⊕ la) + 2n − w(f1 ⊕ la)

= 2n−1 ± 2
n−1

2 + 2n − 2n−1

= 2n ± 2
n−1

2 .

Consequently, by Theorem 1, f(y, x) is a bent func-
tion.

Now, if condition 2 holds, by a similar argument,
we also obtain that f(y, x) is a bent function. �

As an immediate consequence of the previous the-
orem we have the following results.

Corollary 1: Let f0(x) and f1(x) be two Boolean
functions of n variables. If the Boolean function
f(y, x) of n + 1 variables defined by expression (1)
is bent, then only one of the two functions f0(x) and
f1(x) is balanced.

Corollary 2: Let f0(x) and f1(x) be two Boolean
functions of n variables. If the Boolean function
f(y, x) of n + 1 variables defined by expression (1)
is bent, then

f0(a⊕ x)⊕ f1(x) and f0(x)⊕ f1(a⊕ x)

are balanced functions for all a ∈ Zn
2 .

Observe that if we take a = 0 in Corollary 2, then
the Boolean function f0(x)⊕ f1(x) is balanced.

4 Conclusion
Starting with two Boolean functions f0(x) and

f1(x) of n variables (with n a positive odd integer),
we define the Boolean function

f(y, x) = m0(y)f0(x)⊕m1(y)f1(x)

of n + 1 variables. Then, we introduce a necessary
and sufficient condition in order to f(y, x) is a bent
functions and we derive some properties.
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