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Abstract: In this paper we construct a Boolean function of n + 1 variables starting with two Boolean functions of
n variables and we we introduce a necessary and sufficient condition in order to new function be a bent function

when n is a positive odd integer.
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1 Introduction

Boolean functions are used in cryptography [3, 5],
coding theory [2, 9], among others. Boolean functions
in cryptography are the basic elements and should
have high nonlinearity in order to prevent attacks
based on linear approximation. For n a positive even
integer, Boolean functions achieving the maximum
nonlinearity are called bent functions [8, 11].

There are different ways to obtain bent func-
tions, most of them are based on the algebraic nor-
mal form of a Boolean function, see, for example,
[1, 4, 10, 12, 13, 14]. Climent, Garcia, and Requena
[6, 7] using the concept of minterm, presented some
constructions in order to obtain a bent function of n+2
variables starting with some bent functions of n vari-
ables (with n a positive even integer).

The rest of the paper is organized as follows. In
Section 2 we introduce some basic concepts and the
notation we will use in the paper. In Section 3 we
consider two Boolean functions of n variables and in-
troduce a necessary and sufficient condition in order
to a Boolean function of n+ 1 variables (with n a pos-
itive odd integer) be a bent function, and then, we de-
rive some properties. Finally, in Section 4 we present
some conclusions.

2 Preliminaries

Let n be a positive integer. It is well-known that
74 is a linear space over Zy with the addition @ given

by

a®b= (a1 Dbr,a2 Dba,...,a, D by)

where a = (a1, a2, ...,a,) and b = (by,ba,...,by),
and the addition a; ® b;, for i = 1,2,...,n, is the
addition modulo 2 in Z5. In Z% we also consider the
inner product

(a,b) = a1by ® agba ® - - - © anby,.

We call a Boolean function of n variables any
map f : Zy — Zg. Fort = 0,1,...,2" — 1, let
e; be the vector in Z corresponding to the binary ex-
pansion of the integer ¢. The truth table of a Boolean
function f(x) of n variables is the (0, 1)-sequence

§r = (f(eo), f(e1), ..., flean—_1)).

The set B5,, of all Boolean functions of n vari-
ables is also a linear space with the addition f & g
of f,g € B,, given by

(f&g9)(x) = f(x) S g().

We say that a Boolean function f(x) of n vari-
ables is an affine function if it takes the form

f(®) = {a,z) DD,

where a € Z3 and b € Zy. In addition, we call f a
linear function if b = 0. In the rest of the paper we
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write lq () for the linear function defined by a € Z%,
that is, lq(x) = (a,x).

The Hamming weight of a (0, 1)-sequence c, de-
noted by w(«), is the number of 1s in a.. A (0,1)-
sequence is balanced if it contains an equal number
of 0s and 1s. The Hamming distance between two
(0,1)-sequences « and 3, denoted by d(cx, 3), is the
number of positions where the two sequences differ,
thatis d(a, B) = w(a @ B3).

For two Boolean functions f(x) and g(x) of n
variables we have that d(f,g) = d(§;,§,). Also, we
have that w(f) = w(&y) and, therefore, f(x) is bal-
anced if & is balanced; that is, if w(f) = 271 In
this paper we consider 0 and 1 as elements in Zs or in
Z as we need, so

w(f) =Y f(x).

xELy

The nonlinearity NL of a Boolean function f(x)
of n variables is given by

NL(f) = min{d(f,¢) | ¢ € As}

where A,, is the set of all affine functions; it is well
known (see [13]) that

n

NL(f) <21 —2271

The Boolean functions that attains the maximum non-
linearity are called bent functions (see [13]), in this
case, n must be even.

The following result (see [12, 13]), that we quote
for further references, give us a characterization of
bent functions.

Theorem 1: Let f(x) be a Boolean function of n
variables (with n even). The following statements are
equivalent.

1. f(x) is a bent function,

2. f(x) ® f(a & x) is balanced for all a € 75
with a # 0.

Jw(fdly) =21+ 25 foralla € z3.

As a consequence of this theorem, if f () is a bent
function, then the number of 1s of its truth table is
27~14£923~1 and consequently, w(f) = 2"~ 142271,

A minterm on n variables xi,x2,...,T, iS a
Boolean function

n%uhu%“qmﬂ(xlax2r--vwn)

=1ou @z)(1Dus ®x2) - (1 Dup @ xp).

We will write m; () instead of me, () and, therefore,
m;(x) = 1if only if ® = e;. So, the truth table of
m;(x) has a 1 in the ith position and 0 elsewhere.

It is well known that any Boolean function f can
be expressed as

f(x) = @ mi(x)
ieM
for a subset M of Zon, that we call the support of f,
and defined as

M= {icZy| f(e) =1).

So, w(f) = card(M).

Next results, whose proof is immediate, that we
will use later, establishes that for each minterm of n
variables we can obtain two minterms of n + 1 vari-
ables.

Lemma 1: Assume that « € Zon and b € Zo.
If mq(x) is a minterm of n variables and my(y)
is a minterm of one variable, then m.(y,x) =
my(y)ma(x) is a minterm of n + 1 variables, where
c=b-2"+a € Zon+1.

3 Main results

In the rest of the paper we assume that fy(x) and
f1(x) are two Boolean functions of n variables, and
let f(y,x) be the Boolean function of n + 1 variables
given by

fly, ) =mo(y) fo(z) ®mi(y) fi(z). (1)

If My and M; are the supports of fo(x) and f1(x)
respectively, then by lemma 1 we have that

My U {2” +—a/|a € Afl}
is the support of f(y, x) and, consequently,

w(f) = w(fo) +w(f1)

because Mo N {2" +a|a € M} = 0.
Next result will be used in the proof of the main
theorem of this paper (see Theorem 2 below).

Lemma 2: Let fo(x) and fi(x) be two Boolean
functions of n variables and consider the Boolean
function f(y,x) of n+ 1 variables defined by expres-
sion (1). If a € Z5 and b € Zs, then

w(f S lpa))
_Juw(fo®la) +w(fi &la), ifb=0,
T\ w(fodla) + 2" —w(fi©la), ifb=1.
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y x| moly) ma(y) | fo(x) filz) by Aal®) | f(y,x) S lp.a)(y @)
0 | 1 0 ) &1 0 Aq §0 P Aa
1 7| 0 1 & & bl Ag & DbLD A,

Table 1: Truth table of f(y, ) © l(y,a)(y, T)

=0

b=1

gﬂ@Aa

EO@A—G
gl@Aa £1®1@Aa

Table 2: Truth table of f(y,x) @ l( q)(y,x) for the different values of b

PROOF: From expression (1) and the definition of
l(v,a)(y, x) we have that

f(yv :II) @ l(b,a) (:%x)
=mo(y)fo(x) @ mi(y) fi(x) ® by & la(x).

So, if 0 and 1 are the 2™ x 1 arrays with all en-
tries equal to 0 and 1 respectively; 7T is the 2" X n
array whose ith row is e;; &, and &; are the truth
tables of fo(x) and fi(x) respectively; and A, is
the truth table of [4 (), then the last column of Ta-
ble 1 shows the truth table of the Boolean function
f(y7 .’L‘) ©® l(b,a) (yv :13)

Now, the result follows clearly from Table 2 which
represents the two blocks of the truth table of the
Boolean function f(y, x) @ l(,q)(y, =) for the differ-
ent values of b. |

From now to the end of the paper, we assume that
n is odd, and consequently, that n + 1 is even. Next
theorem introduces a necessary and sufficient condi-
tion so that the Boolean function f(y,x) defined by
expression (1) is bent.

Theorem 2: Let fo(x) and fi(x) be two Boolean
functions of n variables. The Boolean function
f(y, @) of n + 1 variables defined by expression (1)
is bent if and only if for all a € Z% one of the two
following conditions hold:

L w(fo®la) =21 £2"% and w(fy @ lg) =
2n—1’

2. w(fy®lg) =27 and w(fi ®lg) =271 &
n—1

272 .

PROOF: Assume that f(y,x) is a bent function.
Then, according to Theorem 1 we have that

w(f ) =2 £2°F

for all (b,a) € Z3T.

Assume first that w(f @1 q)) = 2" + 2”2 when
b =0, 1. Then, by Lemma 2,

2427 = w(fo @ la) +w(fi @ la), @
2" 427 = w(fo@la) +2" —w(fi ®la). ()

If we add equalities (2) and (3) we obtain that
2 (2” n 2”7‘1) = 20(fo @ la) + 2"
and consequently,

n—1

w(fo®lg) =2""1+2"7 .

If instead to add equalities (2) and (3) we substract

one to the other, then we obtain w(f; ® la) = 2" L.
If we assume that w(f ©l(p,q)) = 2" — 2"7" when

b = 0, 1, then, by a similar argument, we obtain that

w(fo®la) = 2" 1—2" and w(fiBle) = 2",

Finally, if we assume that w(f @ l(5q)) = 2" +
QRT_I when b = 0 and w(fEBl(b@)) = 2”—2%_1 when
b=1orw(f ®lpa)) =2" — 2" when b = 0 and

w(f ©lpa) = 2"+ 2”3 when b = 1, then, by a
similar argument, we obtain the equalities of part 2.

Conversely, assume first that condition 1 holds. If
b = 0, then by Lemma 2

w(f @ lpa)) = w(fo®la) +w(fi ®la)

:2n71i2”771+2n71
— o 49"
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If b = 1, then, again by Lemma 2

w(f ©lp.a) = w(fo®la) +2" —w(fi @ la)
—on-lp 9" yon_on!
—on 49"

Consequently, by Theorem 1, f(y, ) is a bent func-
tion.

Now, if condition 2 holds, by a similar argument,
we also obtain that f(y,x) is a bent function. [

As an immediate consequence of the previous the-
orem we have the following results.

Corollary 1: Ler fo(x) and fi(x) be two Boolean
functions of n variables. If the Boolean function
f(y,x) of n + 1 variables defined by expression (1)
is bent, then only one of the two functions fy(x) and
fi(x) is balanced.

Corollary 2: Let fo(x) and fi(x) be two Boolean
functions of n variables. If the Boolean function
f(y,x) of n + 1 variables defined by expression (1)
is bent, then

foladz)® fi(z) and fo(z) & fi(a®x)

are balanced functions for all a € Zz.

Observe that if we take @ = 0 in Corollary 2, then
the Boolean function fo(x) @ fi(x) is balanced.

4 Conclusion

Starting with two Boolean functions fy(x) and
fi(x) of n variables (with n a positive odd integer),
we define the Boolean function

fy,x) = mo(y) fo(x) © mi(y) fi(z)

of n + 1 variables. Then, we introduce a necessary
and sufficient condition in order to f(y,x) is a bent
functions and we derive some properties.
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