
Generating pseudo-random sequences from cellular automata and bent
functions1

FRANCISCO J. GARCÍA(a) VERÓNICA REQUENA(b)2, VIRTUDES TOMÁS(b)3

(a)Departament de Fonaments de l’Anàlisis Econòmica
(b)Departament de Ciència de la Computació i Intel·ligència Artificial

Universitat d’Alacant
Campus de Sant Vicent del Raspeig

Ap. correus 99, E-03080 Alacant
SPAIN

francisco.garcia@ua.es, vrequena@dccia.ua.es, vtomas@dccia.ua.es

Abstract: In this paper we construct three different pseudo-random sequence generators based on cellular au-
tomata where their local transition functions are constructed from bent functions.

Key-words: Pseudo-random sequence, cellular automata, bent function, balanced function.

1 Introduction

Cellular automata (CA) were initiated in the early
1950s as a general framework for modeling complex
structures capable of self-reproduction and self-repair
[1]. The pseudo-random sequence generator based on
CA has been extensively studied in the last decades.
In 1986, Wolfram [7] first applied CA in pseudoran-
dom number generation. After, other authors as Hort-
ensius, Tsalides, Sipper and Perrenoud used the CA to
generate the pseudorandom sequences used in cryp-
tography [4, 5, 8]. But those methods are based on
artificial methods to construct CA rules. The main dis-
advantage of those methods is that they are involved
in large tedious work. Another valid method is intro-
duced by Sipper and Tomassini [4], they used genetic
algorithm to find the best CA randomizer rules auto-
matically. A series of research work has been done to
generate pseudo-random sequences.

In this paper, using a one-dimensional finite CA
we generate pseudo-random sequences. The use of
bent functions as local transition functions can gen-
erate more security due to their good cryptographic
properties.

The article is organized as follows. In Section
2 we introduce some basic concepts about cellular
automata, pseudo-random sequences generators, and
bent functions and the notation we will use. In Section
3 we describe some pseudorandom sequence genera-
tors. In Section 4 we present some results. Finally, we
provide some conclusions in Section 5.

2 Preliminaries
In this section we introduce the main concepts re-

lated to cellular automata, pseudo-random sequence
generators and bent functions.

2.1 Cellular Automata
Cellular automata are discrete dynamical systems

formed by a finite or infinite number of identical ob-
jects called cells [6]. These cells are endowed with a
state which at a given time depends only on its own
state one time step previously, and the states of its
nearby neighbors at the previous time step. The states
of the cells change at every discrete step of time ac-
cording to a deterministic rule. The most used CA are
finite and one-dimensional. More precisely, a one-
dimensional finite CA can be defined as a 4-tuple
A = (C,S, V, f). C is the cellular space formed by
a linear array of m cells; each cell is denoted by 〈i〉,
0 ≤ i ≤ m − 1. S is the (finite) state set, that is, the
set of all possible values of the cells; usually, if the CA
considered is finite with k states, then S = Zk. V is
the set of cells which states in the instant t influence in
state of the cell considered in the instant t + 1; in this
work and for the particular case of the one-dimension
CA, we will consider for every cell 〈i〉 ∈ C, its neigh-
borhood Vr as the ordered set given by

Vr = {〈i− r〉, . . . , 〈i〉, . . . , 〈i + r〉}.

Moreover, the local transition function f :
S(2r+1) → S is the function determining the evolu-
tion of the CA throughout the time, i.e., the changes

1This work was partially supported by Spanish grant MTM2005-05759.
2The work of this author was supported by a grant of the Vicerectorat d’Investigació, Desenvolupament i Innovació of the Universitat

d’Alacant for PhD students.
3The work of this author was supported by a grant of the Vicerectorat d’Investigació, Desenvolupament i Innovació of the Universitat

d’Alacant for PhD students.

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 40

of the states of every cell taking the states of its neigh-
bors into account; hence, if a

(t)
i ∈ S stands for the

state of the cell 〈i〉 at time t, and V
(t)
i is the set of the

states of the cell 〈i〉 at that time; the next state of the
cell is given by

a
(t+1)
i = f

(
a

(t)
i−r, . . . , a

(t)
i , . . . , a

(t)
i+r

)
(1)

As the cellular space is finite, boundary conditions
must be established in order to ensure that the evo-
lution of the cellular automata is well-defined.

The set of states of all cells at time t is called the
configuration at time t and it is represented by the
vector

C(t) =
(
a

(t)
0 , a

(t)
1 , . . . , a

(t)
m−1

)
∈ Sn.

In particular, C(0) is the initial configuration. Hence,
the evolution of A is the following sequence(

C(1), C(2), . . .
)

.

If we denote by C the set of all possible configurations
ofA, then the global function ofA is a linear transfor-
mation, Φ : C → C, that yields the configuration at the
next time step during the evolution of the CA; that is,
C(t+1) = Φ(C(t)). If Φ is bijective then there exists
another cellular automaton, A−1, called its inverse,
whose global function is Φ−1. When such inverse cel-
lular automaton exists, A is called reversible and the
evolution backwards is possible ([24]). In general, the
evolution of a CA considers that the state of every cell
at time t + 1 depends on the state of its neighborhood
at time t, V

(t)
r . Nevertheless, one can consider that

this evolution also depends on the states of other cells
at times t + 1, t + 2, etc. In this case, the transition
function given in (1) can be represented in the follow-
ing way

a
(t+1)
i =

k∑
h=0

f (t−h)V (t−h)
r

where each f (t−h) is a specific local transition func-
tion.

2.2 Pseudo-random sequence generator
A random bit generator is a device or algorithm,

which outputs a sequence of statistically independent
and unbiased binary digits. A pseudo-random bit
generator (PRBG) is a deterministic algorithm which,
given a truly random binary sequence of length m,
outputs a binary sequence of length k � m which
“appears” to be random. The input to the PRBG is

called the seed and the output is called a pseudo-
random bit sequence or pseudo-random sequence.
Good random properties of the generator are conve-
nient to prevent statistical attacks; but moreover, it
is necessary that the generator must be cryptograph-
ically secure.

In order to gain confidence in the “randomness” of
a pseudo-random sequence, statistical tests are con-
ducted on the produced sequences. In our study, we
have considered the six main statistic tests which al-
low us to check, if a generated random or pseudoran-
dom sequence inhibits certain statistical properties

1. Frequency Test (Monobit Test): Are there
equally many 1’s like 0’s?

2. Serial Test (Two-bit Test): Are there equally
many 00-, 01-, 10-, 11-pairs?

3. Poker Test: Are there equally many sequences
of length q having the same value with q such
that

⌊
k
q

⌋
≥ 5× (2q).

4. Runs Test: Are the numbers of runs (sequences
containing only either 0’s or 1’s) of various
lengths as expected for random numbers?

5. Autocorrelation Test: Are there correlations
between the sequence and (non-cyclic) shifted
versions of it?

6. Maurer’s Universal Test: Can the sequence be
compressed?

The above descriptions just give the basic ideas of the
tests.

2.3 Bent functions
A Boolean function of n variables is a mapping

g : Zn
2 −→ Z2. We call the truth table of g the

(0, 1)-sequence of length 2n given by

ξg = (g(u0), g(u1), . . . , g(u2n−1)).

The Hamming distance between two (0, 1)-
sequences α and β, denoted by d(α,β), is the num-
ber of postions where the two sequences differ. If
g(x) and h(x) are Boolean functions and ξg and ξh

are the corresponding truth table, the Hamming dis-
tance between g and h, denoted by d(g, h), is the
Hamming distance between the (0, 1)-sequences ξg

and ξh.
A (0, 1)-sequence is balanced if it contains an

equal number of 0s and 1s; so, a Boolean function
is balanced if its truth table is balanced.

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 41

We say that g ∈ Bn is an affine function if it takes
the form

g(x) = 〈a,x〉 ⊕ b

where a ∈ Zn
2 and b ∈ Z2. If b = 0, we say that f is

a linear function.
We define the nonlinearity of a function g ∈ Bn

as
NL(g) = min{d(g, ϕ) | ϕ ∈ An}

where An is the set of all affine functions. The non-
linearity of g is upper bounded (see [3]) by

NL(f) ≤ 2n−1 − 2
n
2
−1.

We call bent functions the Boolean functions that
achieve the maximum nonlinearity (see [3]). Conse-
quently, bent functions only exist for n even.

The following result (see [2, 3]), that we quote for
further references, gives us a characterization of a bent
function.

Theorem 1: Let g(x) be a Boolean function of n
variables. The following statements are equivalent:

1. g(x) is a bent function.

2. For any a ∈ Zn
2 \ {0}, the Boolean function

g(x)⊕ g(a⊕ x) is balanced.

3. 1⊕ g(x) is also bent function; moreover, this is
the complementary function of g.

3 Models
In this section we present three different pseudo-

random sequence generators based on cellular au-
tomata where the local transition function, f , is gen-
erate from bent functions.

3.1 Model 1
In the first model of pseudo-random sequence

generator, we have considered the CA defined by the
4-tuple A = (C,S, V, f), where

1. C is the cellular space formed by a linear array
of m = 256 cells. Initially, we fix a random
initial configuration vector

C(0) =
(
a

(0)
0 , a

(0)
1 , . . . , a

(0)
m−1

)
.

2. S is the finite set of states k, where S = Zk,
with k = 10000.

3. For every cell 〈i〉 ∈ C, we have taken V2, i.e,
the set given by

V2 = {〈i− 2〉, 〈i− 1〉, 〈i〉, 〈i + 1〉, 〈i + 2〉}

.

4. The local transition function, f , is based on
bent functions in the following way. By The-
orem 1 we know that the function defined by
g(x) ⊕ g(a ⊕ x), for any a ∈ Zn

2 \ {0} being
g a bent function, is balanced. So, in this case,
we take as f this balanced function defined by
bent functions of 4 variables and in some spe-
cific cases we take the complementary function,
1⊕ g(x).

It is well know that in the case n = 4, the
number of bent functions is 896, although we
only consider the half, 448, so that, these are
the main functions, being the rest the comple-
mentary functions.

In each state t for t > 0, we need to take a
bent function, g(x), and a value a to construct
the function g(a⊕x). We fix the bent function
g(x) in the following way. Take the decimal
representation of the configuration at time t−1,
compute it module 448 and add 1; the resulting
number will be in the range of the bent func-
tions, and we consider the bent function associ-
ated to this number. We distinguish two cases
to fix the function f of our CA.

Let a = t mod 2n.

• If a 6= 0, then f(x) = g(x)⊕ g(a⊕ x).

• If a = 0, then f(x) = 1⊕ g(x).

Then we keep the values C(k)(n/2) which gener-
ate the pseudo-random sequence.

3.2 Model 2
In this model and the next, we have taken the same

C, S, V , but change the way to choose the local tran-
sition function f .

Initially we fix a bent function of 4 variables,
g(x), and a value of a inside the range [1, 2n − 1].
Here, we do not distinguish different cases accord-
ing to the state to choose f ; however we always take
as local transition function the balanced function de-
fined by the bent function fixed; that is, f(x) =
g(x)⊕ g(a⊕ x).

With these parameters we generate a different
pseudo-random sequence for each bent function and
for each value of a. As in the previous model, we keep
the values C(k)(n/2) which generate our pseudo-
random sequence.

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 42

3.3 Model 3
Finally, this model perform a mixed model using

the previous ones.
First, we fix a bent function of 4 variables, g(x)

and for each function we generate a different pseudo-
random sequence.

We have a different local transition function f ac-
cording to the value a chosen. We take a in the fol-
lowing way. For l = 0, 1, . . . ,

⌊
k
2n

⌋
a = t mod l(2n − 1)

At the end, we obtain of the same way the pseudo-
random sequence generator.

4 Results
In this section we report the main results obtained

from the three models of pseudo-random sequence
generators explained in the previous section. We have
considered random seed vectors for the different mod-
els. As a minimum security requirement the length k
of the seed to a PRBG should be large enough to make
brute-force search over all seeds infeasible for an at-
tacker. The length of our seeds is m = 256.

In the first model, we use all bent functions and all
values of a for each seed. In this case, all the obtained
sequences for the different seeds pass all our tests.

In the second model, for each bent function we fix
a value for a and we check some random seeds for
these. In this model and the next, we have taken as
valid functions those that at least six of the ten seeds
pass all the tests. For the different values of a, we
have obtained that around 63% of the bent function
pass all the tests.

In the last model, for each bent function we check
some seeds and the results obtained are that around
35% of the bent function pass all the tests.

5 Conclusions
If we observe the previous results it seems to be

that the best model to generate pseudo-random se-
quences based on cellular automata using bent func-
tions is the first model, where we use all bent func-
tions and the different values for a for each seed
taken.

Now, our research is based on the study of some
particular bent functions that have good behaviour in
all the models explained and to observe their results.

References:
[1] P. SAKAR. A brief history of cellular automata.

ACM Comput. Surv, 32 (1), 2000.
[2] J. SEBERRY and X.-M. ZHANG. Constructions

of bent functions from two known bent func-
tions. Australasian Journal of Combinatorics,
9: 21–35 (1994).

[3] J. SEBERRY, X.-M. ZHANG and Y. ZHENG.
Nonlinearity and propagation characteristics of
balanced Boolean functions. Information and
Computation, 119: 1–13 (1995).

[4] M. SIPPER and M. TOMASSINI. Computation
in artificially evolved, non–uniform cellular au-
tomaton. Theoretical Computer Science, 217(1):
81–98 (1999).

[5] M. TOMASSINI and M. PERRENOUD. Crytog-
raphy with cellular automata. Applied Soft Com-
puting Journal, 1(2): 151–160 (2001).

[6] S. WOLFRAM. Cellular automata. Los Alamos
Science, 9, 1983.

[7] S. WOLFRAM. Crytography with cellu-
lar automata. In Advances in Cryptology —
Crypto’85, Vol. 218 of Lecture Notes in Com-
puter Science, pages 429–432. Springer, Heidel-
berg, 1986.

[8] S. WOLFRAM. A New Kind of Science. Wol-
fram Media, Inc., Illinois, 2002.

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 43

	Text4:

