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Abstract:A quantum sealing protocol is a quantum cryptographic protocol that can detect unsealing of a message.
It is known that quantumbit sealing is insecure. However, this does not imply that quantumstring sealing is also
insecure. So the possibility of quantum string sealing has been studied. In this paper, we propose a quantum
sealing protocol and give an information theoretic analysis. We also show that our protocol is almost optimal for
uniformly distributed inputs in the sense that the upper bound of information leaks almost matches the trivial lower
bound.
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1 Introduction

A quantum sealing protocol was first proposed by
Bechmann-Pasquinucci [1], in which the sender (Al-
ice) can encode a secret bit in a quantum state in
such a way that the receiver (Bob) can find out the
value of the bit by an appropriate measurement which
disturbs the quantum state, enabling Alice to detect
such a measurement. It is shown that quantum sealing
has wide applications such as protective packaging,
loose bit commitment, eavesdropping detection and
etc. [13]. Obviously such a sealing cannot be done by
any classical protocol, thus it is very natural to con-
sider an efficient quantum sealing protocol in various
perspectives [2, 3, 6, 12].

However, it was proved by He [7] and Chau [4]
independently that quantumbit sealing is insecure.
Fortunately, this does not mean that quantumstring
sealing is also insecure. Thus, the security of quantum
string sealing has been investigated [5, 6, 8]. Recently,
Chau claimed that there is no secure quantum string
sealing protocol [5] in the following sense: It was
shown that there is a cheating strategy that can reveal
the whole string with non-negligible probability while
it is detected with probability less than1/2. Replying
to this, He claimed that the whole string is not neces-
sarily recovered even for honest players, and quantum

string sealing protocols can be such that honest play-
ers can obtain a fraction of the sealed message with
high probability but the whole message with exponen-
tially small probability [8]. He also claimed that the
amount of information that one can obtain by Chau’s
attack strategy is trivial in the sense that Chau’s attack
strategy is almost the same as measuring the quantum
state honestly with probability 1/2 and doing nothing
otherwise [8, 9].

These arguments are due to the lack of a formal
definition of a measure of information leaks. As a
measure of information leaks, a mutual information
was mentioned in Chau’s paper [5], however his anal-
ysis concentrated mainly on calculating Bob’s success
probability and covered only the limited case in which
the attacker wants to retrieve the whole message. On
the other hand, He’s analysis concentrated on the suc-
cess probability that Bob successfully obtains (a por-
tion of) the sealed message without being detected [6].

In this paper, contrary to the above mentioned pa-
pers, we take a different approach, that is, we give
an information theoretic analysis where the measure
of information leaks is a mutual information between
the inputs and the results of Bob’s measurement. As
He mentioned in [8, 9], it is obvious that if the attacker
decodes the sealed message honestly with probability
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δ and do nothing with probability1−δ, he/she can re-
trieveδ · Imax of information while it can be detected
with probability at mostδ, whereImax is the amount
of information that honest players can retrieve. Thus,
the point is whether the attacker can do more or not.
To answer this question, we propose a quantum string
sealing protocol that is almost optimal for the uni-
formly distributed input strings in the sense that the
upper bound of information leaks almost matches the
trivial lower bound. That is, the attacker can do noth-
ing more than the above trivial attack.

Technically, we used the lemma shown by Lo and
Chau [10], which gives an upper bound to the mutual
information between the measurement results of the
two quantum subsystems. The difficulty is to modify
the quantum sealing scheme to fit the lemma since the
lemma can be applied only to a pure quantum state
while the actual quantum sealing scheme can be rep-
resented by mixed states. We give an ideal model of
quantum sealing so that we can apply the lemma to it,
while the model can be shown to be equivalent to the
actual model.

This paper is organized as follows: In Section 2,
we introduce a model of quantum sealing and show a
trivial lower bound that is mentioned by He [8, 9]. In
Section 3, we propose a quantum string sealing proto-
col and show the upper bound on the amount of infor-
mation leaks, which almost matches the trivial lower
bound for uniformly distributed inputs. Section 4 con-
cludes this paper.

2 Preliminaries
We define the model of quantum sealing as follows:

• Alice encodes the input string into a quantum
state that consists of two quantum registers.

input stringi: |0⟩ |0⟩ −→ Σjαj

∣∣∣ϕi
j

⟩ ∣∣∣ψi
j

⟩
,

where
∣∣∣ϕi

j

⟩
are mutually orthogonal. Then Alice

sends the second register to Bob. That is, Bob
has the following stateρi.

ρi = Σj |αj |2
∣∣∣ψi

j

⟩ ⟨
ψi

j

∣∣∣
Bob performs a POVM toρi in order to decode
the state, and obtain a result.

We define the amount of information Bob obtains to
be a mutual information betweenX andY , whereX
is a random variable representing the input string and
Y is a random variable representing Bob’s result of
POVM. We also define the decoding rate as follows:

(decoding rate)= Imax/H(X),

whereImax is the mutual information betweenX and
Y for the case that Bob performs the measurement
honestly.

As He pointed out in [8], a trivial attack to quan-
tum sealing protocols is to measure the quantum state
honestly with probabilityδ and leave it untouched
with probability1 − δ. Then, Bob can obtainδ · Imax

bits of information while it is detected with proba-
bility at mostδ. Thus, we have the following lower
bound on the amount of information Bob can obtain.

Theorem 1 For any n-bit quantum string sealing
protocol with decoding rate of1 − ε, there is a cheat-
ing strategy that can retrieveδ · (1 − ε) · H(X) bits
of information with detection probability less than or
equal toδ, whereX is a random variable representing
the input string.

Proof: Let Y ′ be a random variable representing the
value obtained by the following decoding scheme:

• With probability δ, decode the quantum state
honestly, and with probability1 − δ, do nothing.

The amount of information Bob obtains isI(X : Y ′).
Let SX be the set of possible input strings, and letSY

be the set of possible outcomes that Bob obtains when
he decodes the quantum state honestly. Also letpX(x)
be the probability ofX = x, and letpX|Y (x|y) be the
conditional probability ofX = x givenY = y.

Then,Y ′ is z (no outcome) with probability1−δ.
Note thatpX|Y ′(x|z) = pX(x).

Y ′ is y ∈ SY with probability δ · pY (y), where
pY (y) is the probability thaty is obtained when Bob
measures the quantum state honestly.

Thus,

H(X|Y ′)
= −(1 − δ)Σx∈SX

pX|Y ′(x|z) log pX|Y ′(x|z)
−Σy∈SY

δ · pY (y)Σx∈SX
pX|Y (x|y) log pX|Y (x|y)

= (1 − δ)H(X) + δH(X|Y ).

Note thatI(X|Y ) = (1 − ε)H(X). Thus,

I(X : Y ′)
= H(X) − H(X|Y ′)
= H(X) − ((1 − δ)H(X) + δH(X|Y ))
= δ(H(X) − H(X|Y ))
= δI(X|Y )
= δ(1 − ε)H(X).

⊓⊔
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3 Our protocol and its security anal-
ysis

In this section, we propose a quantum sealing pro-
tocol, and show that our protocol is almost optimal
for uniformly distributed input strings. That is, for
uniformly distributed input strings, the upper bound
on the amount of information Bob can obtain almost
matches the lower bound shown in Theorem 1.

The proposed protocol is as follows.1 Let i be
an input string (0 ≤ i ≤ 2n − 1). Alice randomly
choosesX ∈ {X0, . . . , X2n−1}, and encodes the in-
put as 1√

2
(|i⟩+|X⟩), where{|0⟩ , . . . , |2n − 1⟩ , |X0⟩ ,

. . . , |X2n−1⟩} are mutually orthogonal. Then Alice
sends the encoded state to Bob. For decoding of the
message, Bob measures the received quantum state
with respect to the computational basis, by which Bob
can obtain the correct message with probability1/2.
Note that the quantum state after the measurement is
|i⟩ or |X⟩. Thus Alice can detect Bob’s measurement
with probability 1/2 by measuring the state with re-
spect to 1√

2
(|i⟩ + |X⟩).

Honest Bob can obtainH(X)/2 bits of informa-
tion as proved in the following theorem, whereX is
a random variable representing the input string. Espe-
cially, for uniformly distributed input strings, Bob can
obtainn/2 bits of information.

Theorem 2 Our protocol achieves decoding rate1/2.

Proof: Let Y1 = {0, 1, . . . , 2n − 1}. Also let Y2 =
{X0, X1, . . . , X2n−1}. We defineSX andSY in the
same way as in Theorem 1.

H(X|Y )
= −Σy∈SY

pY (y)H(X|y)
= −Σy∈SY

pY (y)Σx∈SX
pX|Y (x|y) log pX|Y (x|y)

= −Σy∈Y1pY (y)Σx∈SX
pX|Y (x|y) log pX|Y (x|y)

−Σy∈Y2pY (y)Σx∈SX
pX|Y (x|y) log pX|Y (x|y)

= −Σy∈Y1pY (y) · 0
−Σy∈Y2pY (y)Σx∈SX

pX(x) log pX(x)
= −Σy∈Y2pY (y)H(X)
= H(X)/2

Therefore

I(X : Y ) = H(X) − H(X|Y ) = H(X)/2.

⊓⊔
For our protocol, we have the following upper

bound.
1Note that our protocol uses a single register, while two reg-

isters are used in our general model defined in Section 2. That
is, our protocol is the special case of the general model where the
first register is fixed to|0⟩, which we omit to describe.

Theorem 3 We consider arbitrary decoding scheme.
For the decoding scheme, if Bob can be detected with
probability at mostδ, then the amount of information
that Bob can obtain isO((δ + 1/2n)n). ⊓⊔

Note that for uniformly distributed input strings,
the upper bound almost matches the lower bound,
δn/2, in Theorem 1.

In order to prove Theorem 3, we introduce the
following lemma shown by Lo and Chau [10].

Lemma 4 Given any pure stateϕAB of a system
consisting of two subsystemsA and B, and any
measurementsX and Y on A and B respectively,
the entropy of each subsystemS(ρA) (whereρA =
TrB |ϕAB⟩ ⟨ϕAB|) is an upper bound to the amount of
mutual information betweenX andY . ⊓⊔

We regardA andB as the quantum states that Alice
and Bob have, respectively. We also regardX and
Y as the measurements on Alice’s input and Bob’s
state respectively. Then we can calculate the upper
bound to the mutual information between the inputs
and Bob’s results of POVM, i.e., the amount of infor-
mation leaks. However, the model of quantum seal-
ing defined in Section 2 does not fit Lemma 4. To
apply Lemma 4 to our quantum sealing scheme, we
introduce the following cheating model. We consider
three quantum registers. The first register has a su-
perposition of input strings,Σ2n−1

i=0
√

pi |i⟩, wherepi

is the probability that Alice hasi as an input. Al-
ice encodes the input string into the second register,
and sends it to Bob. We assume that Alice chooses
X ∈ {X0, . . . , X2n−1} randomly in advance and uses
the sameX to encode every input string. That is, the
state right after Alice encodes the input string is

Σ2n−1
i=0

√
pi |i⟩ ⊗

(
1√
2
(|i⟩ + |X⟩)

)
⊗ |0⟩ .

The third register is Bob’s ancilla. Bob applies arbi-
trary unitary operatorUB to the second and the third
registers, and then measures the third register to obtain
information. In order to detect Bob’s measurement,
Alice measures the second register. In this model,
Bob’s measurement is restricted to the third register.
However, this does not restrict Bob’s ability (See Sec-
tion 2.2.8 in [11]). Note that after Alice encodes the
input string, the first register is no longer referred to.
This means that the state that Alice and Bob can have
after Alice encodes the input string is a mixed state
obtained by tracing out the first register. This mixed
state is the same state as in the actual protocol. Thus
our analysis using the above cheating model is valid
for the actual situation.

Let X be a random variable representing the re-
sult of a measurement on the first register, and letY
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be a random variable representing the result of Bob’s
measurement. Then mutual informationI(X : Y )
represents the amount of information that Bob can ob-
tain.

Considering the above cheating model, we have
the following as a corollary of Lemma 4.

Corollary 5 LetρA be the state of the subsystem con-
sisting of the first and the second registers right before
Bob’s measurement. Then the amount of information
that Bob can obtain is upper bounded byS(ρA). ⊓⊔

To prove Theorem 3, we also introduce the fol-
lowing lemma.

Lemma 6 Let UB be an arbitrary unitary operator
that Bob applies to the second and the third registers.
ThenUB is equivalent toU ′

B that satisfies the condi-
tion below in the sense that the detection probability
and the amount of information Bob can obtain are in-
variant betweenUB andU ′

B.

U ′
B |i⟩ |0⟩ = Σ2n−1

j=0 aj |Xj⟩
∣∣∣wXj

⟩
+Σ2n−1

j=0 bj |j⟩ |wj⟩,

where|a1| = |a2| = . . . = |a2n |(≤ 1√
2n ).

Proof: We can write as follows:

UB |i⟩ |0⟩ = Σ2n−1
j=0 aj |Xj⟩

∣∣∣wXj

⟩
+Σ2n−1

j=0 bj |j⟩ |wj⟩,

X ∈ {X0, . . . , X2n−1} is chosen randomly when Al-
ice encodes the input string. Thus applying the fol-
lowing Uπ

B instead ofUB does not affect the detection
probability and the amount of information Bob can
obtain:

Uπ
B |i⟩ |0⟩

= Σ2n−1
j=0 aj

∣∣∣Xπ(j)

⟩ ∣∣∣wXπ(j)

⟩
+ Σ2n−1

j=0 bj |j⟩ |wj⟩ ,

whereπ is a random permutation ofj. Sinceπ is
chosen randomly, the resulting state will be a mixed
state. By purifying the resulting (mixed) state with
enough number of ancilla, the operation can be written
as

U ′
B |i⟩ |0⟩ = Σ2n−1

j=0 aj |Xj⟩
∣∣∣wXj

⟩
+Σ2n−1

j=0 bj |j⟩ |wj⟩,

where|a1| = |a2| = . . . = |a2n |(≤ 1√
2n ). ⊓⊔

We prove Theorem 3 in the following.

Proof of Theorem 3: Let |ψ⟩ ∈ Hn. Also letHm

andHn−m be the subspaces ofHn, wherem < n,
and let|ϕ⟩ ∈ Hm. We define notatioñ⊥ as follows:

• |ϕ⟩ ⊥̃ |ψ⟩ means that for any|ϕ′⟩ ∈ Hn−m, the
composite system of|ϕ⟩ and|ϕ′⟩ is perpendicular
to |ψ⟩.

We can write as follows:

UB |X⟩ |0⟩ = α1 |X⟩ |wα⟩+α′
1 |ψα1⟩ |wα⟩+β1 |ψβ1⟩,

where|X⟩ ⊥̃ |ψβ1⟩, |wα⟩ ⊥̃ |ψβ1⟩ and |X⟩ ⊥ |ψα1⟩.
Also we can write as follows:

UB

(
1√
2
|i⟩ +

1√
2
|X⟩

)
|0⟩ = α |ψα⟩ |wα⟩+β |ψβ⟩ ,

(1)
where|wα⟩ ⊥̃ |ψβ⟩. We calculate a lower bound on
the detection probability in the following, and then
derive an upper bound on|β|. We consider a projec-
tion of β |ψβ⟩ onto the subspace in which the second
register is fixed to( 1√

2
|i⟩ + 1√

2
|X⟩)⊥ (= 1√

2
|i⟩ −

1√
2
|X⟩). Since|wa⟩ ⊥̃ |ψβ⟩, the detection probability

is at least the absolute square of the length of the pro-
jection. We first expressβ |ψβ⟩ in terms of|X⟩ and
|i⟩. By Lemma 6, we can assume the following:

UB |i⟩ |0⟩

= Σ2n−1
j=0

e
iθXj a′√

2n
|Xj⟩

∣∣∣wXj

⟩
+ Σ2n−1

j=0 bj |j⟩ |wj⟩ ,

where0 ≤ a′ ≤ 1. We can write as follows:

eiθX a′√
2n

|X⟩ |wX⟩ =
a′′√
2n

|X⟩ |wα⟩+
a√
2n

|X⟩
∣∣∣w⊥

α

⟩
,

where|wα⟩ ⊥
∣∣∣w⊥

α

⟩
. Thenβ |ψβ⟩ can be described

as follows:

β |ψβ⟩ =
a√

2
√

2n
|X⟩

∣∣∣w⊥
α

⟩
+ b |i⟩ |w⟩ + c

∣∣∣ψ′
β

⟩
,

where |X⟩ ⊥̃
∣∣∣ψ′

β

⟩
, |i⟩ ⊥̃

∣∣∣ψ′
β

⟩
, |a| ≤ a′ ≤ 1 and

| a√
2n+1

|2 + |b|2 + |c|2 = |β|2.
As mentioned in the above, we consider a projec-

tion of β |ψβ⟩ onto the subspace in which the second
register is fixed to( 1√

2
|i⟩ + 1√

2
|X⟩)⊥ (= 1√

2
|i⟩ −

1√
2
|X⟩). Let p be the square of the length of the pro-

jection. Then the detection probability is at leastp.
Since the detection probability is at mostδ, we have
p ≤ δ. By the lower bound onp and the condition
p ≤ δ, it can be shown that|β| ≤

√
2δ+ 1√

2n (See Ap-

pendix). This implies that|α| ≥
√

1 − O(δ + 1/2n).
We rewrite Eq. (1) as follows:

UB

(
1√
2
|i⟩ +

1√
2
|X⟩

)
|0⟩

= αi
∣∣∣ψi

α

⟩
|wα⟩ + βi

∣∣∣ψi
β

⟩

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007     33



Then, the whole state including the first to the third
registers|Ψ⟩ is described as follows:

|Ψ⟩ = Σi
√

pi |i⟩
(
αi

∣∣∣ψi
α

⟩
|wα⟩ + βi

∣∣∣ψi
β

⟩)
= A |ΨA⟩ |wα⟩ + B |ΨB⟩ ,

where{pi} is the probability distribution of inputs.
Note that|A| ≥

√
1 − O(δ + 1/2n). By tracing out

the third register, we obtain the following:

ρA = |A|2 |ΨA⟩ ⟨ΨA| + |B1|2 |ΨB1⟩ ⟨ΨB1 |
+|B2|2 |ΨB2⟩ ⟨ΨB2 | + . . .

Thus,

S(ρA) ≤ −|A|2 log |A|2 + Σj − Bj log Bj

≤ −|A|2 log |A|2

+Σ22n+1

1 − (1 − |A|2)
22n+1

log
(1 − |A|2)

22n+1

= H(|A|2) + (1 − |A|2) log 22n+1

≤ 1 + O(δ + 1/2n)(2n + 1)

Thus,S(ρA) ≤ O((δ+1/2n)n). By Corollary 5, Bob
can obtain the information at mostO((δ + 1/2n)n).⊓⊔

4 Conclusion
We proposed a quantum string sealing protocol and
analyzed it information-theoretically. We showed that
our protocol is optimal in the sense that the upper
bound of information leaks almost matches the triv-
ial lower bound if the probability distribution of in-
put strings is uniform, i.e., the lower bound isδn/2,
and the upper bound isO((δ + 1/2n)n). This result
gives the trade-offs between the amount of informa-
tion leaks and detection probabilities. Note that this
result says that there is a quantum string sealing pro-
tocol in which the attacker can do nothing more than
the trivial cheating strategy.

In our protocol, optimality is guaranteed only in
the case that inputs are uniformly distributed. The fu-
ture work is to show the optimality for arbitrary dis-
tribution.
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Appendix

To show|β| ≤
√

2δ + 1√
2n , we first calculate a lower

bound onp. p is minimized whenc = 0 and
∣∣∣w⊥

α

⟩
=

|w⟩ (
△
= |W ⟩). Then we have

β |ψβ⟩

=
a√
2n+1

|X⟩ |W ⟩ + eiθ

√
|β|2 − |a|2

2n+1
|i⟩ |W ⟩ .

We also consider the following state:

1√
2
|X⟩ |W ⟩ − 1√

2
|i⟩ |W ⟩
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Then the absolute square of the inner product of the
above two vectors is equal top. Thus,

p =

∣∣∣∣∣∣ |a|√
2n+2

− eiθ

√
|β|2
2

− |a|2
2n+2

∣∣∣∣∣∣
2

≥

 |a|√
2n+2

−

√
|β|2
2

− |a|2
2n+2

2

△
= f(|a|) (

△
= F 2),

where |β|2
2 − |a|2

2n+2 ≥ 0, i.e.,|a| ≤ 2(n+1)/2|β|. Then

f ′(|a|) = 2F (
d

d|a|
F ),

where

d

d|a|
F =

1√
2n+2

+
|a|

2n+1
· 1

2
√

|β|2
2 − |a|2

2n+2

.

Since d
d|a|F > 0, f ′(|a|) = 0 at |a| = 2n/2|β|.

This value satisfies the condition of|a| ≤ 2(n+1)/2|β|.
Since |a| ≤ 1 andf ′(|a|) is a monotone-increasing
function,f(|a|) attains the minimum at

|a| = Min{2(n+1)/2|β|, 1},

i.e., at

|a| = 2(n+1)/2|β| for |β| ≤ 1
2(n+1)/2

and

|a| = 1 otherwise.

In the case of0 ≤ |β| ≤ 1
2(n+1)/2 , it is obvious that

|β| ≤
√

2δ + 1√
2n . We consider the case of|β| >

1
2(n+1)/2 in the following.

f(|a|) attains the minimum at|a| = 1.

f(1) =

 1√
2n+2

−

√
|β|2
2

− 1
2n+2

2

=
|β|2

2
− 1√

2n

√
|β|2
2

− 1
2n+2

= Y − 1√
2n

√
Y − 1

2n+2
,

whereY = |β|2
2 . Note thatδ ≥ p ≥ f(1). Thus,

Y − δ ≤ 1√
2n

√
Y − 1

2n+2
.

In the case ofY − δ < 0, it is obvious that|β| ≤√
2δ + 1√

2n . We consider the case ofY − δ ≥ 0 in the
following. From

Y − δ ≤ 1√
2n

√
Y − 1

2n+2
,

we have

(Y − δ)2 ≤ 1
2n

(Y − 1
2n+2

),

i.e.,

Y 2 − (2δ +
1
2n

)Y + (δ2 +
1

22n+2
) ≤ 0.

The solutions ofY 2− (2δ+ 1
2n )Y +(δ2 + 1

22n+2 ) = 0
are

Y = δ +
1

2n+1
±

√
1
2n

δ.

Thus,

δ +
1

2n+1
−

√
1
2n

δ ≤ Y ≤ δ +
1

2n+1
+

√
1
2n

δ.

Since|β|2 = 2Y ,

|β| ≤
√

2

√
δ +

1
2n+1

+
√

1
2n

δ

≤
√

2

√
δ +

1
2n+1

+
√

2
2n

δ

=
√

2

√
(
√

δ +
1

2(n+1)/2
)2

=
√

2δ +
1√
2n

⊓⊔
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