
Low-Thrust Trajectories to the Moon 
 

ANTONIO F. B. A. PRADO 
Space Mechanics and Control Division 

INPE - National Institute for Space Research 
Av dos Astronautas 1758 – SJC – SP – 12227-010 

BRAZIL  
 

 
 

Abstract: - In this paper the problem of sending a spacecraft from Low Earth Orbit (LEO) to the Moon with 
minimum fuel consumption is considered. It is assumed that the "Two-Body model" approximation is valid in 
all phases of the mission and that the final orbit around the Moon is polar. The first part deals with impulsive 
maneuvers, and obtain a set of values for fuel expenditure and trip time for several trajectories. Two possible 
scenarios are considered: a single mission (only one spacecraft in orbit around the Moon) and a double 
mission (one main spacecraft and a sub-satellite around the Moon). The second part considers the use of low-
thrust trajectories. The Euler-Lagrange equations are used to generate a set of differential equations that are 
numerically integrated to obtain the final orbit. The difficulty caused by a lack of initial values for all variables 
in the same point (Two Point Boundary Value Problem) is treated by making iterations in the initial values of 
the Lagrange multipliers. The results showed that large savings in fuel consumption can be obtained by using 
low thrust trajectories for the Earth-Moon part of the mission. The contribution of the present paper related to 
previous ones written by the same author is the use of the Powell’s Quadratically Convergent method to 
solve the problem, that showed to have a better numerical behaviour regarding convergence. 
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1   Introduction 
The establishment of a manned lunar base is 
certainly one of the next big step of the mankind in 
its journey to the space. To accomplish this goal, a 
more detailed study of the Moon, including its 
mineral resources and physical properties, has to be 
done. It is in this context that the Lunar Polar 
Orbiter mission appears. It is constituted by one or 
two spacecrafts in Moon's polar orbit, to make 
measurements in the Moon's surface and 
neighborhood. The data obtained will be used for 
several important tasks, like: site selection of the 
lunar base; improvements of trajectory calculation 
around the Moon, study of possible mineral 
exploitation, etc. 
     The objective of this paper is to make a 
preliminary study of the possible trajectories to be 
used to go to the Moon. It is assumed that the 
spacecraft begins its trip in Low Earth Orbit (LEO) 
and that the equations given by the Two-Body non-
perturbed problem are valid for each phase of the 
mission. Two scenarios are studied: in the first one a 
single spacecraft will orbit the Moon; and in the 
second one the main spacecraft will have a sub-
satellite in a higher orbit. 
     Special attention is given to the difference in fuel 
consumption obtained by using two options of thrust 

for the Earth-Moon transfer: Infinite (using 
Hohmann Transfer) and Low Thrust (using optimal 
control theory). 
     This kind of problem was analyzed before in 
Prado1 and Prado and Rios-Neto2, where the 
gradient projection method was used to solve the 
numerical problem. It showed to be a useful tool, but 
convergence was difficult in some situations. In the 
present paper, the Powell’s Quadratically 
Convergent method3 was used for the optimization 
steps of the algorithm. This method showed to be 
better, in terms of convergence, in the simulations 
performed. The problem considered here is very 
sensitive to initial guesses and it finds only local 
minimum, that are candidates for a global minimum. 
Then, from the engineering point of view, a 
numerical algorithm that is more efficient in terms 
convergence is an important tool for the mission 
designer. 
 
 
2   Impulsive Maneuvers 
In this case it is assumed that an infinite thrust 
acting during a negligible time can change the 
velocity of the spacecraft instantaneously. It is also 
assumed that the spacecraft will leave the Earth 
from a circular parking orbit with an altitude of 200 
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km. The main goal is to obtain the values of the 
velocity increment, trip time and mass of fuel 
required for many trajectories, to select one of them 
for a more detailed analysis. The two scenarios 
considered here are4: 
     1) A single mission with the spacecraft in a 
circular orbit around the Moon with an altitude of 
100 km and 90 degrees of inclination; 
     2) A double mission with the two spacecrafts in 
different orbits: 

• The main spacecraft in a circular orbit 
around the Moon with an altitude of 100 km and 90 
degrees of inclination; and 

• The sub-satellite (with no engines) in a 
elliptical orbit around the Moon with semi-major 
axis of 3000 km, eccentricity of 0.37, argument of 
perigee of 0.25 degrees West and inclination of 90 
degrees. 

• Using the "Two-Body model" approximation 
for the Earth-spacecraft system, it is possible to 
obtain the trip time for different trajectories, all of 
them assumed to be elliptical with perigee of 6570 
km. The results are shown in Table 1. 
 

Table 1  - Orbital parameters and trip time for 
different trajectories to the Moon 

 
Orbit Semi-major  

axis (km) 
Eccentricity Trip Time in

 hr. (days) 
  1    500000   0.986   58.5 (2.43) 
  2    400000   0.983   61.0 (2.54) 
  3    300000   0.978   67.0 (2.80) 
  4    250000   0.974   73.9 (3.08) 
  5    230000   0.971   77.0 (3.21) 
  6    220000   0.970   83.2 (3.47) 
  7    200000   0.967  100.0 (4.17) 
  8    195485   0.960  119.6 (4.98) 

 
     Using impulsive approximation, it is possible to 
evaluate the velocity increment necessary to put the 
spacecraft into Lunar Transfer Orbit (LTO). Four 
different orbits were chosen for detailed 
calculations: 2, 6, 7 and 8. The results are shown in 
Table 2. 

 
Table 2  - Velocity increment for LTO 

 
Orbit Apogee distance (km) ∆V (km/s)     

  2     793430      3.18 
  6     433430      3.14         
  7     393430      3.13         
  8     384400      3.11         

 

     The spacecraft arrives at the sphere of influence 
of the Moon with hyperbolic excess velocity and it 
is necessary to apply a retrograde impulse to achieve 
an elliptic lunar orbit. Using the basic equations 
from the Two-Body model for the Moon-spacecraft 
system, it is possible to obtain the velocity of the 
spacecraft with respect to the Moon (assumed to be 
in circular orbit around the Earth) and the velocity 
decrement required. At this point it is necessary to 
consider the maneuvers in two scenarios, because 
the velocity decrement depends on how many 
spacecrafts are in the mission. If there is only one 
spacecraft, it is possible to assume that with small 
mid-course corrections it can achieve a hyperbolic 
arrival at the Moon with the desired perigee altitude 
(1840 km) and orbit inclination (90 degrees). Then it 
is necessary to apply only one impulse, at the 
perigee, to obtain the desired circular orbit. The 
velocity decrements are shown in Table 3. 

 
Table 3  - Velocity decrement to insert one probe 

into Moon's orbit 
 

Orbit     ∆V (km/s)   
2     1.07 
6     0.91               
7     0.88               
8     0.79               

 
     If there are two spacecrafts, it will be necessary 
to use a more complex maneuver, because the sub-
satellite has no engine. In this case, the insertion into 
Moon's orbit will be done with both spacecrafts 
together, in the orbit desired for the sub-satellite. 
After the separation of the two spacecrafts, the 
primary spacecraft will be transferred to its final 
orbit. 
     Assuming that the optimal maneuver (insertion at 
the perigee of the elliptical orbit) is used and that, 
after separating from the sub-satellite, the main 
spacecraft will be transferred to its final orbit using 
a bi-impulsive Hohmann Transfer, the results for the 
∆V required can be calculated. They are shown in 
Table 4. 
 
Table 4  - Velocity decrement to insert two probes in 

Moon's orbit 
 

Orbit  ∆Vi (km/s)    ∆Vt (km/s)   
2    0.78       0.29       
6    0.63       0.29       
7    0.60       0.29       
8    0.50       0.29       
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where ∆Vi is the velocity decrement for lunar 
insertion of both spacecrafts together and ∆Vt is the 
total ∆V to transfer the main spacecraft to its final 
orbit. 
The results of both approaches (∆V1 for a single 
mission and ∆V2 for a double mission) are 
summarized in Table 5. 

 
Table 5  - Total ∆V for both missions 

 
Orbit  ∆V1 (km/s)    ∆V2 (km/s)   

2    4.68       4.68       
6    4.45       4.47       
7    4.41       4.42       
8    4.30       4.30       

 
     To consider errors in the models involved and 
midcourse corrections, 10% was added to the ∆Vs. 
With the total ∆Vs obtained, it is possible to 
calculate the fuel mass required for the mission. 
Three different specific impulses (Isp) were 
assumed and 10% was added to include the 
hardware required for storage. The results are shown 
in Tables 6 (single mission) and 7 (double mission). 
In this last case, the difference in mass between the 
set of the two spacecrafts and the main spacecraft 
itself was neglected, since the mass of the sub-
satellite will be very small. 
 

 
Table 6  - Mass of fuel required for a single mission 
 

Isp(s)\Orbit 2   6   7   8   
240 6.95 6.20 6.07 5.75 
290      4.61  4.17  4.09  3.90  
340      3.38  3.08 3.03  2.90  

 
Table 7  - Mass of fuel required for a double mission 
 

Isp(s)\Orbit 2   6   7   8   
240      6.95  6.26  6.10  5.75  
290      4.61  4.20  4.11  3.90  
340      3.38  3.12  3.04  2.90  

 
     Some alterations in the trajectory maybe 
necessary for many reasons. If it is necessary to 
change the orbit during the mission or, if a different 
parking orbit (or no parking orbit) around the Earth 
is used, the optimal trajectory may change. 
However, these results are still valid because these 
alterations do not affect the ∆V, trip time or mass of 

fuel consumed by a significant amount. The 
literature5,6 also confirms these values. 
     The advantageous of a short trip time are that it 
requires less time of tracking and has more safety 
(because there is some excess in velocity). The 
disadvantageous is that it requires more fuel. 
Considering these facts and the data available it is 
necessary to find the most economical orbit inside 
the range of safety. After preliminary studies, orbit 6 
was considered to be a good choice for a more 
detailed study. 
 
 
3   Low-Thrust Trajectory 
This study was done with the objective of 
comparing the differences in fuel consumption for 
an Earth-Moon transfer with low thrust. 
     The spacecraft is supposed to be in planar 
Keplerian motion controlled only by the thrust, 
whenever it is active. This thrust is assumed to have 
the following characteristics: 
 i) Fixed magnitude; 
 ii) Constant Ejection Velocity; 
 iii) Free angular motions; 
 iv) Operation in on-off mode. 
     The solution is given in terms of the time-
histories of the thrust (pitch angle), fuel consumed 
and duration of the propelled phase. 
     This is a typical optimal control problem, and it 
is formulated as follows: 
Objective Function: Mf, 

 where Mf is the final mass of the vehicle and it has 
to be maximized with respect to the control u(.); 
Subject to:  Equations of motion, constraints in 
the state (initial and final orbit) and control (limits in 
the angles of "pitch" and "yaw", forbidden region of 
thrusting and others); 
And given: All parameters (gravitational force 
field, initial values of the satellite and others). 
     The equations of motion are the ones suggested 
by Biggs7, that avoid the singularities in circular 
and/or planar orbits. They are given by:  
 
dX1/ds = f1 = SiX1F1     (1) 
 
dX2/ds=f2= 
Si{[(Ga+1)cos(s)+X2]F1+νF2sin(s)}      (2) 
 
dX3/ds = f3 = Si{[(Ga+1)sin(s)+X3]F1-νF2cos(s)}     
       (3) 
 
dX4/ds = f4 = SiνF(1-X4)/(X1W)          (4) 
 
dX5/ds = f5 = Siν(1-X4)m0/X1                 (5) 
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dX6/ds=f6=-SiF3[X7cos(s)+X8sin(s)]/2  (6) 
 
dX7/ds=f7=SiF3[X6cos(s)-X9sin(s)]/2    (7) 
 
dX8/ds=f8=SiF3[X9cos(s)+X6sin(s)]/2   (8) 
 
dX9/ds=f9=SiF3[X7sin(s)-X8cos(s)]/2    (9) 
 
where: 
 
Ga = 1 + X2cos(s) + X3sin(s)             (10) 
 
Si = (µ X1

4)/[Ga3m0(1-X4)]       (11) 
 

)cos()cos(FF1 βα=    (12) 
 

)cos()(FsinF2 βα=   (13) 
 

)(FsinF3 β=    (14) 
 
and F is the magnitude of the thrust, W is the 
velocity of the gases when leaving the engine, ν is 
the true anomaly of the spacecraft. 
     In those equations the state was transformed from 
the Keplerian elements (a = semi-major axis, e = 
eccentricity, i = inclination, Ω = argument of the 
ascending node, ω = argument of periapsis, ν = true 
anomaly of the spacecraft), in the variables Xi, to 
avoid singularities, by the relations: 
 
X1 = [a(1-e2)/µ]1/2   (15) 
 
X2 = ecos(ω-φ)    (16) 
    
X3 = esin(ω-φ)    (17) 
 
X4 = (Fuel consumed)/m0  (18) 
 
X5 = t = time    (19) 
 
X6 = cos(i/2)cos((Ω+φ)/2)   (20) 
 
X7 = sin(i/2)cos((Ω-φ)/2)   (21) 
 
X8 = sin(i/2)sin((Ω-φ)/2)   (22) 
 
X9 = cos(i/2)sin((Ω+φ)/2)   (23) 
 
φ = ν +ω - s    (24) 
 
and s is the range angle of the spacecraft.  

     The number of state variables defined above is 
greater than the minimum required to describe the 
system, which implies that they are not independent 
and relations between than exist, like: 

. This system is also 
subject to the constraints in state and some of the the 
Keplerian elements of the initial and the final orbit. 
All the parameters (gravitational force field, initial 
values of the satellite, etc...) are assumed to be 
known. 

1XXXX 2
9

2
8

2
7

2
6 =+++

 
 
4  Numerical Method 
In the references cited before1,2 the gradient 
projection method was used to solve the numerical 
problem. It showed to be a useful tool, but 
convergence was difficult in some situations. In the 
present paper, the Powell’s Quadratically 
Convergent method3 was used for the optimization 
steps of the algorithm. This method showed to be 
better, in terms of convergence, in the simulations 
performed. It means that at the end of the numerical 
integration, in each iteration, two steps are taken: 
i) Force the system to satisfy the constraints by 
updating the control function according to: 
  

[ ] fff..f 1TT −

+ ∇∇∇−= i1i uu          (25) 
 
where f is the vector formed by the active 
constraints; 
 
ii) After the constraints are satisfied, try to minimize 
the fuel consumed. This is done by making a step 
given by: 
 

d
d

α+=+ i1i uu    (26) 

 
where: 
 

d).(J
)(J

u
u

∇
γ=α     (27) 

  

[ ]( ) )(J.. 1TT u∇∇∇∇−−=
− ffffId      (28) 

 
where I is the identity matrix, d is the search 
direction, J is the function to be minimized (fuel 
consumed) and γ is a parameter determined by a trial 
and error technique. The possible singularities in 
equations (25) to (28) are avoided by choosing the 
error margins for tolerance in convergence large 
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enough. 
     This procedure continues until u ui 1 i+ − < ε  in 
both equations (25) and (26), where ε is a specified 
tolerance. 
 
 
4   Results 
The low thrust propulsion system was studied only 
for the Earth-Moon trajectory and not for the lunar 
insertion phase. The satellite is supposed to leave 
the Earth from a circular orbit with semi-major axis 
of 6570 km and to go to an orbit with eccentricity of 
0.97 and semi-major axis of 220000 km, that is the 
Lunar Transfer Orbit desired (Orbit 6 in Table 1). 
This transfer is considered to be planar, because this 
is the less expensive case (in terms of fuel 
consumed) and it can be obtained with an adequate 
choice of the launch time. Two values were 
considered for the mass of the satellite after the low 
thrust maneuver: 150 and 180 kg. These values are 
compatible with a final mass of 100 and 120 kg in 
lunar orbit, respectively. The motor/fuel 
combination is supposed to have a specific impulse 
of 3500 s, and a thrust magnitude of 200 and 20 N 
was simulated. Figs. 2 to 5 show the optimal control 
(pitch angle) for all combinations studied. Table 8 
shows the fuel consumption and the duration of the 
propelled phase for all cases. 
 

Table 8 - Fuel consumed and duration of the 
propelled phase for all trajectories simulated 

 
Mission E-M 

(kg) 
Ins. 
(kg) 

Total 
(kg) 

Time  
(h)  

Imp 1 205.78 31.40 237.18 0.00    
Imp 2 247.69 38.16 285.85 0.00    
L. T. 1 22.37 31.40 53.77 10.67   
L. T. 2 14.75 31.40  46.15 0.65 
L. T. 3 27.05 38.16 65.21 12.89 
L. T. 4 18.02 38.16 56.18 0.86 

Impulsive 1: Single mission using an engine with 
specific impulse of 340 s; 
Impulsive 2: Double mission using an engine with 
specific impulse of 340 s; 
L. T. 1: Single mission using an engine with 20 N 
and specific impulse of 3500 s, and assuming a mass 
of 150 kg for the spacecraft after the Low-Thrust 
maneuver; 
L. T. 2: Single mission using an engine with 200 N 
and specific impulse of 3500 s, and assuming a mass 
of 150 kg for the spacecraft after the Low-Thrust 
maneuver; 
L. T. 3: Double mission using an engine with 20 N 

and specific impulse of 3500 s, and assuming a mass 
of 180 kg for the spacecraft after the Low-Thrust 
maneuver; 
L. T. 4: Double mission using an engine with 200 N 
and specific impulse of 3500 s, and assuming a mass 
of 180 kg for the spacecraft after the Low-Thrust 
maneuver; 
E-M: Fuel consumed for the Earth-Moon trajectory; 
Ins.: Fuel consumed for the lunar insertion, 
assuming an engine with specific impulse of 340 s; 
Total: Total mass of fuel required (Earth-Moon 
trajectory + lunar insertion). 
Time: Duration of the propelled arc; 
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Fig. 2 - Pitch angle (deg) X Range angle (deg) for 

Low Thrust 1 maneuver. 
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Fig. 3 - Pitch angle (deg) X Range angle (deg) for 

Low Thrust 2 maneuver. 
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Fig. 4 - Pitch angle (deg) X Range angle (deg) for 

Low Thrust 3 maneuver. 
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Fig. 5 - Pitch angle (deg) X Range angle (deg) for 

Low Thrust 4 maneuver. 
 
 
6   Conclusion 
This paper showed the basic parameters for several 
trajectories to send, insert and keep a spacecraft in 
lunar orbit. The numerical results also showed that, 
with the error parameters used, there is no necessity 
to use an underburn technique for lunar insertion. It 
also showed that the use of low thrust maneuver for 
the Earth-Moon trajectory can make very large 
savings in fuel expenditure; 
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