
The Applications of Ameso Optimization in Supply Chains

Katehakis, M. N
Rutgers Business School

Department of MSIS
180 University,

Newark, New Jersey
mnk@andromeda.rutgers.edu

Chen, Wen
Rutgers Business School

Department of MSIS
180 University,

Newark, New Jersey
wenc@andromeda.rutgers.edu

Abstract: In this paper we discuss the application of a special class of discrete optimization problems the ameso
programming problems. For these problems we have established elsewhere that there exits an efficient solution
procedure called the Ameso Reduction Procedure (ARP). In this paper it is shown that certain multi-type vehicle
shipping problems can be expressed as ameso optimization problems. We apply the ARP to solve these problems
and we present detailed numerical studies. Furthermore, the complexity of the two type vehicle problem is give,

Key–Words: Discrete Optimization, Supply Chain Logistics.

1 Introduction
In this paper we discuss the applicationm of a special
class of discrete optimization problems the ameso pro-
gramming problems. The main properties they have
are: 1) high dimensional ameso optimization prob-
lems can be solved by decomposition into lower di-
mensional ameso optimization problems; 2) for one
dimension ameso optimization problems there are
simple, to verify, optimality conditions at any optimal
point [1].

I section 2 we review the ameso optimization
problem and its properties. In section 3, we present
an application of the ameso optimization for Multi
Type Vehicle Shipping Problems (MTVSP). Firstly
we show that MTVSP can be formulated as an ameso
optimization problem. Next, we design an algorithm
to find the optimal solution for the Two Type Vehicle
Shipping Problem. Next, we show that our algorithm
will computer an optimal solution in at most q iter-
ations, where q is a constant determined by parame-
ters of the problem. Then we extend our ameso based
algorithm to Multi Type Vehicle Shipping Problems.
In the end, we give some numerical examples on the
MTVSP problem. For related work in supply chain
logistics and optimization we refer to [2] [3] [4] and
[6]. For another successful solution by decomposition
we refer to [5].

2 Review of Ameso(C) Optimization
Given a subset Dn of the n - dimensional integers,
Dn ⊆ Zn, and a real function f defined on Dn, we
define the following:

Definitions 1

1. Ameso Set: Dn is an ameso set, if it satisfies
following condition:

- ∀~x, ~y ∈ Dn ⇒
⌈

~x+~y
2

⌉
,
⌊

~x+~y
2

⌋
∈ Dn.

2. Ameso(C) pair: (Dn, f) is a ameso(C) pair, if
and only if

- the domain Dn of the function f(·) is an
ameso set and

- f(·) has a lower bound and
- ∃C > 0 such that the following holds for
∀~x, ~y ∈ Dn

f(~x)+f(~y)+C ≥ f(d~x + ~y

2
e)+f(b~x + ~y

2
c).

3. Ameso(C) Optimization: The problem
minimize f(~x); subject to ~x ∈ Dn is an
Ameso(C) Optimization problem, if (Dn, f), is
an Ameso(C) pair.

Definitions 2.

1. The domain ∆j
i1,...,ij

⊆ Dn is the set:

∆j
i1,...,ij

= {(xi1 , ..., xij) :

∃(x′1, ..., x′n) ∈ Dn with x′ik = xik , ∀k =
1, ..., j}.

2. The conditional domain of ~x ∈ Dn given
x0

i1
, ..., x0

ij
to be the set: Γn−j

x0
i1

,...,x0
ij

= {(x1, ..., xn) ∈ Dn : xik = x0
ik
∀k =

1, ..., j}.

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 10

3. The conditional function: f∗i1,...,ij
:

∆j
i1,...,ij

−→ <
f∗i1,...,ij

(xi1 , ..., xij) = min
~y∈Γn−j

xi1
,...,xij

f(~y).

4. The conditional pair of ameso(C) pair to be the
pair: (∆j

i1,...,ij
, f∗i1,...,ij

).

It has been shown in [1] that the following corol-
lary and proposition hold.

Corollary 1. If we can find x′ ∈ D1 = [zs, zt] ∩
Z, z1 ∈ D1, z2 ∈ D1, z1 < x′, z2 > x′ with f(z1) −
f(x′) ≥ C and f(z2)− f(x′) ≥ C

then

miny∈[z1,z2]∩Zf(y) = miny∈D1f(y).

Proposition 2. The conditional pair
(∆j

i1,...,ij
, f∗i1,...,ij

) of an n-dimensional ameso(C)
pair (Dn, f) is a j-dimensional ameso(C) pair.

Further, in [1] it was shown that the following
Ameso Reduction Procedure (ARP) can compute an
optimal solution, without necessarily doing an ex-
haustive search.

Ameso Reduction Procedure (ARP)
Input: Ameso(C) Optimization problem:
minimize f(~x); subject to ~x ∈ Dn

Step 1: A = φ, l+ = 0, l− = 0, select a point
l0 ∈ ∆1

n,l∗ = l0, S = l0, then calculate f∗n(l0) =
min(x1,...,xn−1,l0)∈Γn−1

l0
f(x) †,

Step 2: Update l+ = min{x|x > l0, x ∈ ∆1
n −

A},
then calculate f∗n(l+) =

min(x1,...,xn−1,l+)∈Γn−1

l+
f(x) †

Step 3: If f∗n(l+)− f∗n(l∗) ≥ C, go to step 4;
If 0 ≤ f∗n(l+)− f∗n(l∗) < C, then A = A ∪ {l+}

go to step 2.
If f∗n(l+) − f∗n(l∗) < 0, then A = A ∪ {l+},

l∗ = l+ go to step 2.
If {x|x ∈ ∆1

n −A, x > l0} = φ, go to step 4;
Step 4: Update l− to be any integer satisfying

f∗n(l−) = max{l|l∈A,l<l∗}f∗n(l);
If f∗n(l−)− f∗n(l∗) ≥ C, go to output;

Step 5: Update l− = max{x|x < l0, x ∈ ∆1
n −

A},
then calculate
f∗n(l−) = min(x1,...,xn−1,l−)∈Γn−1

l−
f(x) †

Step 6: If f∗n(l−)− f∗n(l∗) ≥ C, go to output;
If 0 ≤ f∗n(l−)− f∗n(l∗) < C, then A = A ∪ {l−}

go to step 5.
If f∗n(l−) − f∗n(l∗) < 0, then A = A ∪ {l−},

l∗ = l− go to step 5.

If {x|x ∈ ∆1
n −A, x < l0} = φ, go to output;

Output: A, l∗, f∗n(l∗)

†Note : the computation of f∗n(l0), f∗n(l+) and
f∗n(l−) above involves the solution of (n − 1)-dim
ameso(C) optimization problems.

3 Multi Type Vehicle Shipping Prob-
lems(MTVSP).

3.1 Problem Formulation.

Assume we have n + 1 types of vehicles to transport
a total cargo of weight W. Each type i = 0, 1, . . . , n,
has a fixed shipping fee Si and a fixed capacity Ci.
We assume that type 0 vehicle has the smallest ca-
pacity. The problem is how to distribute the total
cargo W. Let xi be the number of type i vehicles
used in an allocation, i = 1, . . . , n; where we as-
sume that residual cargo is allocated to “type 0” ve-
hicle. The number of “type 0” vehicles that are used

is
⌈(

W−∑n
i=1 xiCi

C0

)+
⌉

.

Let Dn
TS be the domain of (x1, . . . xn), then

Dn
TS = {~x = (x1, . . . , xn) : ~x ∈ Zn+, xi ≤ dW

Ci
e, ∀i}.
(1)

It is easy to see that the domain Dn
TS is an ameso

set, because if ~x, ~y ∈ Dn
TS , then

⌈
~x+~y

2

⌉
,
⌊

~x+~y
2

⌋
∈

Dn
TS .

And the total shipping fee (TS) is the following
function:

TS(x1, . . . , xn) =
n∑

i=1

xiSi+

⌈(
W −∑n

i=1 xiCi

C0

)+
⌉

S0.

(2)
The objective is to solve the following problem:

min TS(~x); subject to ~x ∈ Dn
TS . (3)

The following lemma is easy to prove.

Lemma 3. For any arbitrary real numbers x1, x2, y,
the following is true:
⌈
(x1 + y)+

⌉
+

⌈
(x2 − y)+

⌉
≥ ⌈

x+
1

⌉
+

⌈
x+

2

⌉−max{|x1−x2|, 1}.
(4)

Next we will discuss how to solve this Multi Type
Vehicle Shipping problem. First, it is easy to prove,
using the lema above, the following theorem.

Theorem 4. The MTVS problem:

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 11

min TS(x1, . . . , xn); s.t (x1, . . . , xn) ∈ Dn
TS

is an n−dim ameso(C) optimization problem with
C = b

∑n
i=1 Ci

C0
cS0.

In the remaining discussion we will assume the
following inequalities to hold for all i, j, 0 ≤ i < j ≤
n :

Ci < Cj , Si < Sj , Si
Ci

>
Sj

Cj
.

These inequalities are often valid in practice, and
under this assumption we can have very good algo-
rithmic performance.

3.2 Two-Type-Vehicle Shipping Problem

First, we discuss just two types of vehicles with C0 <
C1, S0 < S1, (S1

C1
< S0

C0
). The problem becomes:

min TS(x1) = x1S1 + d
(

W−x1C1
C0

)+
eS0;

subject to x1 ∈ D1
TS , D1

TS = {0, 1, . . . ,
⌈

W
C1

⌉
}

.
We use corollary 1 to design Algorithm 1, below,

to solve the Two-Type-Vehicle shipping problem.
Algorithm 1
Input: W,C0, C1, S0, S1,

Step One: K =
⌈

W
C1

⌉
, J+ = φ, l1 = K, j =

1, J+ = J+ ∪ {lj}, calculate TS(l1)
Step Two: j = j + 1, lj = lj−1 − 1, J+ = J+ ∪

{lj}, calculate TS(lj)
If j = K + 1, stop;
If TS(lj)−minli∈J+TS(li) ≥ bC1

C0
cS0, stop;

If TS(lj) − minli∈J+TS(li) < bC1
C0
cS0, go to

step 2.
Output: j, J+, l∗ where TS(l∗) =

minli∈J+TV (li).
By construction, the output of the above algo-

rithm, j, J+, will satisfy:

- either j =
⌈

W
C1

⌉
+ 1, J+ = {0, 1, . . . ,

⌈
W
C1

⌉
};

- or TS(lj) − minli∈J+TS(li) ≥ bC1
C0
cS0, J+ =

{l1, l2, . . . , lj}.

We can now state the following:

Theorem 5. The output l∗ of Algorithm 1 is an opti-
mal solution.

Next we discuss the complexity of Algorithm 1.

Let q = min

{⌈
W
C1

⌉
+ 1,

⌈
2

1−S1/C1
S0/C0

⌉
+ 1

}
.

Theorem 6. Algorithm 1 will stop in at most q iter-
tions.

Proof: First, we only have
⌈

W
C1

⌉
+ 1 feasible so-

lutions for x1, so the algorithm has to stop in at most⌈
W
C1

⌉
+ 1 iterations, in the worst case that it will try

all feasible solutions. In this case j =
⌈

W
C1

⌉
+ 1.

Next we will show algorithm has to stop in at

most
⌈

2

1−S1/C1
S0/C0

⌉
+1 iterations. We have S1

C1
< S0

C0
⇒

S1
S0

< C1
C0
⇒ S1

S0

C0
C1

< 1.

Let m =
⌈

2

1−S1/C1
S0/C0

⌉
. Then m ≥ 2

1−S1/C1
S0/C0

=

2C1
C0

C1
C0
−S1

S0

. Hence, m(C1
C0

− S1
S0

) ≥ 2C1
C0

. And then

mC1
C0
− C1

C0
−mS1

S0
≥ C1

C0
. Then dmC1

C0
− C1

C0
e−mS1

S0
≥

bC1
C0
c. And because l1 =

⌈
W
C1

⌉
⇒ W − l1c1 >

−c1 ⇒
⌈
mC1

C0
+ W−l1C1

C0

⌉
≥

⌈
mC1

C0
− C1

C0

⌉
, then⌈

mC1
C0

+ W−l1C1
C0

⌉
−mS1

S0
≥ bC1

C0
c.

That is to say
⌈

W − (l1 −m)C1

C0

⌉
S0 −mS1 ≥ bC1

C0
cS0 (5)

Since l1 =
⌈

W
C1

⌉
, and li = li−1 − 1, ∀i > 1 it

follows that lm+1 = l1 − m, W−(l1−m)C1

C0
≥ 0, and

W−l1C1
C0

≤ 0. Thus,

TS(lm+1)− T (l1)
= (l1 −m)S1 + dW−(l1−m)C1

C0
eS0 − l1S1 − 0

= dW−(l1−m)C1

C0
eS0 −mS1 ≥ bC1

C0
cS0

(because of (5))

Let J+ = {l1, l2, . . . , lm+1}, then |J+| = m + 1.
And it is easy to see that TS(l1) ≥

minli∈J+TS(li) because of l1 ∈ J+, so

TS(lm+1)−minli∈J+TS(li)
≥ TS(lm+1)− TS(l1) ≥ S0,

satisfies the one stop condition of the algorithm.
That is to say, the algorithm would stop in at most
|J+| = m + 1 iterations.

If S1/C1

S0/C0
becomes smaller, then

⌈
2

1−S1/C1
S0/C0

⌉
+ 1

will be smaller, and this will result in a smaller num-
ber of iterations in Algorithm 1. The proof is com-
plete. ut

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 12

Next, we will show how to solve Multi Type Ve-
hicle Shipping Problem.

3.3 Algorithm for Multi-Vehicle-Shipping
Problem

Using proposition 2, and results of [1] regarding the
ARP algorithm, it follows that we can solve the (n +
1)−type-vehicle shipping problem, with algorithm 2
below.

Algorithm 2
Input: W,C0, . . . , Cn, S0, . . . , Sn,

Step One: Kn =
⌈

W
Cn

⌉
, J+ = φ, l1 = Kn, j =

1, J+ = J+ ∪ {lj}
calculate f∗n(l1) = TS(0, . . . , 0, l1)
Step Two: j = j + 1, lj = lj−1 − 1, J+ = J+ ∪

{lj},
Let W ′ = W − ljCn, then calculate

f∗n(lj) f∗n(lj) = min(x1,...,xn−1,lj)∈Γn−1
lj

∑n
i=1 xiSi +

⌈(
W ′−∑n−1

i=1 xiCi

C0

)+
⌉

S0.

It is a n-type-vehicle shipping problem and
it is a (n− 1)-dim ameso(C ′) optimization prob-

lem (C ′ = b
∑n−1

i=1 Ci

C0
cS0)

Step Three: If j =
⌈

W
Cn

⌉
+ 1, stop;

If f∗n(lj)−minli∈J+f∗n(li) ≥ b
∑n

i=1 Ci

C0
cS0, stop;

If f∗n(lj)−minli∈J+f∗n(li) < b
∑n

i=1 Ci

C0
cS0, go to

step 2.
Output: j, J+, l∗: f∗n(l∗) = minli∈J+f∗n(li).
(x1∗, . . . , xn−1∗, l∗): f∗n(l∗) =

TS(x1∗, . . . , xn−1∗, l∗)
We can now state the following

Theorem 7. The output (x∗1, . . . , x
∗
n−1, l

∗) of Algo-
rithm 2 generates an optimal solution for (n + 1)−
type vehicle shipping problem.

3.4 Numerical study
Example 3: We consider W = 152257. We as-

sume that the “type 0 ” vehicle of the discussion above
is the one with the smallest capacity. The capacities
and shipping fees listed in table 3.1. We did a numeri-
cal study for the above example. The entire algorithm
was implemented in Matlab 6.5 by PC IBM X32: Intel
Pentium M, processor 1.80GHZ. We started with two
types of vehicles only and we increased the number
of available types of vehicles, solving each case with
the same algorithm. Computational results are sum-
marized in Table 3.2. below. (capacity: ci(unit: ton),
shipping fee si(unit:$1K))

Table 3.1
type i 1 2 3 4 5 6 7

ci 23 27 31 37 44 49 54
si 46 48.6 49.6 51.8 52.8 53.8 54

Table 3.2
Available Opt. value Number of Running

type b
∑

i6=1 Ci

C1
c ($1K) Iterations time

1,7 2 152280 4 < 0.01s
1,4,7 3 152277.8 9 < 0.01s
1,2,4

7 5 152277.8 12 < 0.01s
1,2,4,

6,7 7 152277.7 2352 0.04s
1,2,4,
5,6,7 9 152277.6 3127 0.05s

1-7 10 152275.6 4013 0.10s

It is clear that adding more vehicle types would
bring a lower optimal value, but it required more iter-
ations and computation times. We still see the running
time is not very large even having 7 types of vehicles
available. Figure 1 shows the relation between the
number of types, b

∑
i6=1 Ci

C1
c and the optimal values.

More available types will require solving a higher di-
mension algorithm, and bigger b

∑
i6=1 Ci

C1
c will require

more iterations of the same dimensional algorithm. In
table 3.2 we let both of them to increase. Figure 2
shows the relation between running time and number
of iterations. About four thousand iterations can be
performed in 0.1 seconds in a modern PC, because
the computation of each iteration takes minimal time.
Figure 3 shows the relation between the number of
available types and the optimal values. It is interest-
ing that adding more available types does not guaran-
tee to reduce costs (sometimes, the result cannot get
better), but adding more available types guarantees to
increase iterations.

2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
um

be
r

of
 It

er
at

io
ns

Line 1

Line 2

Figure 1 Line 1: No. of types vs. No. of Iterations

Line 2: b
∑

i6=1 Ci

C1
c vs. No. of Iterations

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 13

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Running time (unit: second)

N
um

be
r

of
 It

er
at

io
ns

Figure 2 Running Time vs. No. of Iterations

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

1.52271

1.52272

1.52273

1.52274

1.52275

1.52276

1.52277

1.52278

1.52279

1.52280

No. of Avaliable Types

O
pt

im
al

 V
al

ue
s

Figure 3 No. of types vs. Optimal Values

Example 4: In this example we demonstrate the
relation between the dispersion of the capacities or
shipping fees and the running times, or the number of
iterations. We assume that the “type 0 ” vehicle of the
discussion above is the one with the smallest capacity.
We consider shipping 152265 tons of products, with
available vehicles as listed in table 3.3 below. The
running results are also in this table. The entire algo-
rithm was implemented in Matlab 6.5 on an IBM X32
PC with Intel Pentium M, processor 1.80GHZ.

Table 3.3

Available Types Cmax−Cmin

Cavg

Smax−Smin

Savg

C0 = 23, C1 = 31, C2 = 39
S0 = 46, S1 = 60.2, S2 = 73.1 0.516 0.453
C0 = 23, C1 = 32, C2 = 41

S0 = 46, S1 = 62.1, S2 = 76.7 0.563 0.498
C0 = 23, C1 = 33, C2 = 43

S0 = 46, S1 = 64.0, S2 = 80.3 0.606 0.541
C0 = 23, C1 = 34, C2 = 45

S0 = 46, S1 = 65.9, S2 = 83.9 0.647 0.581
C0 = 23, C1 = 35, C2 = 47

S0 = 46, S1 = 67.8, S2 = 87.5 0.686 0.618
C0 = 23, C1 = 36, C2 = 49

S0 = 46, S1 = 69.7, S2 = 91.1 0.722 0.654
C0 = 23, C1 = 37, C2 = 51

S0 = 46, S1 = 71.6, S2 = 94.7 0.756 0.688
C0 = 23, C1 = 38, C2 = 53

S0 = 46, S1 = 73.5, S2 = 98.3 0.789 0.720

Every case in table 3.3 has bC1+C2
C0

cS0 = 3S0 =
138. Hence each case is a 3-dim ameso(138) opti-
mization problem.

Figure 4 shows the relation between Cmax−Cmin
Cavg

,Smax−Smin
Savg

and the number of iterations. When
Cmax−Cmin

Cavg
(or Smax−Smin

Savg
) become smaller, the num-

ber of iterations increases. When the differences be-
come smaller, the algorithm needs more steps to com-
pute which one is better and more iterations are gener-
ated. Figure 5 shows the relation of the optimal values
for the five cases. We constructed the data in table 3.3,
so that S0/C0 in each group is the same, and S2/C2

and S3/C3 increase gradually. This means the second
and the third vehicle type in each group is replaced by
two more economical types in the next group.

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
800

1000

1200

1400

1600

1800

2000

2200

2400

N
um

be
r

of
 It

er
at

io
ns

Line 1

Line 2

Figure 4 cmax−cmin
cavg

vs. No. of Iterations

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 14

1 2 3 4 5 6 7 8
2.82

2.825

2.83

2.835

2.84

2.845

2.85

2.855
x 10

5

O
pt

im
al

 V
al

ue

Figure 5 Case No. vs. Optimal Value

4. Conclusion
In this paper, we have discussed the application

of Ameso optimization to certain multi- type vehicle
shipping problems (MTVS), when they are viewed as
Ameso optimization problems. The later is a very in-
teresting class of discrete optimization problems that
have the following properties. Their solution can be
computed by identifying some subset of their domain
and a high dimensional problem can by be decom-
posed into solving lower dimensional problems. In
this paper we have shown how to design an efficient
algorithm for the MTVS problems and we have given
numerical studies that illustrate the performance of the
algorithm.

Acknowledgements: The research was supported by
the Rutgers University Business School Research Re-
sources Committee.

References:

[1] Katehakis M. N. and Chen Wen (2007). “Ameso
Optimization and its Properties”, Working pa-
per.

[2] Julien Bramel, David Simchi-Levi (1997) The
Logic of Logistics : Theory, Algorithms,
and Applications for Logistics Management,
Springer Series in Operations Research.

[3] Jing-Sheng Song and David D. Yao (2001) Sup-
ply Chain Structures: Coordination, Information
and Optimization Kluwer Academic Publishers.

[4] Yinyu Ye (1997)Interior-Point Algorithms: The-
ory and Analysis, John Wiley & Sons.

[5] Katehakis M. N. and A. F. Veinott Jr. (1987).
“The Multi-Armed Bandit problem: decompo-
sition and computation”, Mathematics of Oper-
ations Research, 22 (2), 262–268.

[6] Van Ryzin, Garrett; McGill, Jeff (2000) “Rev-
enue Management Without Forecasting or Op-
timization: An Adaptive Algorithm for Deter-
mining Airline Seat Protection Levels”. Man-
agement Science, 46 (6), 760-776.

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 15

	Text4:

