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Abstract: - Artificial implementation of Biological Metaplasticity property promise to improve Artificial Neural 
Networks (ANN) design. This upgrade of existing models claims a much more efficient information extraction 
from the patterns available to train the ANN. The hypothesis has been tested as an application example in the 
Multilayer Perceptron (MLP) case, probably the most widely ANN applied through the ANN history. The 
results show a much more efficient training that is of crucial relevance when few training patterns are the only 
information font for the ANN design. 
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1 Introduction 
 
The occurrence of sustained changes in synapses or 
synaptic plasticity, was envisioned in 1894 by Santiago 
Ramón y Cajal,  Nobel Prize in Medicine 1906, who 
pointed out that learning could produce changes in the 
communication between neurons and that this changes 
could be the essential mechanisms of memory [1]. In 
1948 Konorski alluded to persistent plastic changes in 
memory and in 1949 Hebb postulated that during 
learning synaptic connections are strengthened due to 
the correlated activity of presynaptic and postsynaptic 
neurons. This plasticity property of the synaptic 
connections is modeled in many Artificial Neural 
Networks as changes in the connections weights of their 
artificial neurons or nodes. So, synaptic plasticity of 
biological neural networks has been simulated in 
artificial ones by weight values, parameters that play a 
most relevant role in ANN learning and performance. 
Synaptic Metaplasticity is defined by many scientists as 
the plasticity property of synaptic plasticity [2, 3]. That 
is, it has been observed that not only biological synapses 
strength changes with its participation in neurons 
activity, but also the efficiency of the change is different 
depending on the stimulus the neuron is involved in. 
 
The idea proposed and tested in this paper is based on 
the hypothesis that biological synaptic metaplasticity 
could have a direct relation with the information carried 
by the input stimulus of the neurons, or training patterns 
in its artificial counterpart. It is applied in the experiment 
tested in this paper to improve the basic BP algorithm 
[12][13] used to train an Artificial Neural Network  

 
 
(ANN) of the Multilayer Perceptron (MLP) type 
manipulating the Mean Square Error (MSE) objective 
function in order to give more relevance to less frequent 
training patterns and resting relevance to the frequent 
ones. If the MSE objective function is defined by the 
following expression: 

 
{ }2( )MS dE Y Yε= −   (1)

  
 
where the random variable ( )Y g X=  is the neural 
network output and X is a random variable of the 
training input vectors 1 2( , ,... )nx x x x= , ( nx R∈ ), 

where nR  is the n-dimensional space. Yd represents the 
desired output. From statistical inference theory applied 
to Eq. (1), an estimator of EMS is given by [4]: 
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where 
* , 1, 2...kx k N= , are independent sample vectors 

whose pdf is * ( )Xf x , and  e(·) is the error as a function 
of the training  inputs applied in MLP training to update 
the weights in each training iteration step.  * ( )Xf x  is 
ideally given by [4]: 
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and it is not possible to be known a priori because EMS is 
not known and e(·) is changing in each iteration. 
Nevertheless, the suboptimal solutions can be tested, if 

* ( ) 0Xf x ≠  wherever ( ) 0e x ≠ , nx R∀ ∈ . 
 
2 Weighting Operation 
 
The scheme in Fig. 1 represents the training cycle when 
applying the weighting function. 

 

 
 

Fig. 1.  Weighted Training Cycle 
 
For weighting, we have tested two different functions: 
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and 
* 0.01( )

ˆXf x
y

= .                                                   (5) 

Eq. (2) in fact shows that the MSE can be achieved if we 
divide the error function e(·) by a weighting function 

* ( )Xf x . In Eq. (4) a Gaussian function is proposed as 
weighting function supposing that the inputs also have 
Gaussian distribution. In Eq. (5) the advantage is taken 
from the inherent a posteriori probabilities estimation of 
the MPL output.    
 
 
3 Computer Results 
 
Experiments have been carried out in order to evaluate 
the Backpropagation with Weighting (BPW) [4, 8-10] 
algorithm.  The main objective of these experiments is 
the evaluation of the weighting function capabilities and 
limits.  We present the results obtained from training of 
100 Neural Networks (NNs) using a BPW algorithm 
consisting in Least Mean Square (LMS) criterion 
modified by the proposed weighting functions. 

3.1 General Characteristics of the Experiments 
 
The ANNs used are MLPs with structure 16/8/1 (that is 
16 inputs, and one hidden layer of 8 units).  The choice 
of the structure and the rest of parameters of the network 
was the optimal solution for the given example 
application [7]. The activation function is sigmoidal with 
scalar output in the range (0,1) and, it is the same for all 
the neurons. 
 
For the training of the network we used balanced 
patterns of two classes, being class H0 noise patterns and 
being class H1 signal received with additive Gaussian 
noise.  These patterns configure the problem of signal 
detection noise and the ANN acts as a binary detector. 
The application of the ANN is an elemental radar 
detection problem [7] when the basic parameter for the 
patterns is the Signal to Noise ratio, SNR, and the 
performance of the detectors is evaluated in terms of the 
Neyman-Pearson criterion. That is, maximizing 
probability of detection, Pd, (the probability of 
classifying correctly the patterns belonging to the class 
H1) for a fixed false alarm probability, Pfa (the 
probability of classifying erroneously the patterns 
belonging to the class H0).  In the radar literature, 
performance is evaluated through the Detection curves  
(Pd vs. SNR), so we use these detection curves to present 
the results of our method.  
 
In our previously conducted experiments the training of 
a network was limited to the error probability value in 
range of 0.1–0.2.  Fig. 2 shows an example of NN 
training only using weighting function (4). As we can 
notice, classification error reached the value of 0.125, 
and this NN could not be considered completely trained. 
For this reason, the weighting function (1) was applied 
until the critical error probability value was reached, and 
from that point the weighting function was changed to 
(2).  The function (5) is not valid until the output of the 
network is a sufficiently good approximation of the a 
posteriori probabilities of the inputs. In the first 
iterations, it can be ˆ 0y = , and the NN stops learning.  
We conducted two experiments with the different critical 
error probability values: 0.2 and 0.15. 
In each experiment 100 networks were trained in order 
to achieve mean results that does not depend on initial 
random  
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Fig. 2.  Classification error in training phase with only 

one weighting function. 
 

value of the weights of the ANN. Two different 
criterions were applied to stop the training: in one case it 
was stopped when the error reached zero (denoted as 
ism) and in the other the training was conducted with a 
fixed number of 3000 patterns (3ism). 

As usual [5], three set of patterns have been used to 
design the network. A training set (composed of patterns 
of  SNR=13.2 dB for class H1 ), a test set to calculate the 
error during training and a validation set to obtain the 
detection curves.  

3.2. Critical error probability 0.2 
 
Fig. 3 shows the error evolution during the network 
training phase, calculated as the rate of misclassified 
patterns of the training set out of the total number of 
patterns.  We can notice that the combination of the 
proposed weighting functions in this experiment made 
possible to override the threshold of error of 0.2 where 
the training was stopped when using only one function. 

 
 

Fig. 3.  Classification Error in Training Phase, Threshold 
0.2. 

 
Fig. 4.  Detection Probability, Pfa=10-2, Threshold 0.2. 

 
 

 
 

Fig. 5.  Detection Probability, Pfa=10-3, Threshold 0.2. 
 

 
 

Fig. 6.  Detection Probability, Pfa=10-4, Threshold 0.2. 
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The detection probability for three different false alarm 
probability (probability of “decide H0 when input 
corresponds to H1”) values related to the SNR are shown 
in Fig. 4, 5 and 6, respectively.  The red line represents 
the theoretical maximum by Marcum theorem [11].  The 
green line represents average performance for the 
networks that were trained until the error probability 
reached zero and the blue line is used for the networks 
trained with the fixed number of patterns.  False alarm 
probabilities, Pfa, of 10-2, 10-3 and 10-4 have been 
considered.  For the detection probability that 
corresponds to the false alarm probability of 0.01, we 
find that the results are noticeably better if the NNs were 
trained with the fixed number of patterns (3000) for all 
the values in relation to the SNR between 0 and 8 dB. 
 
In the case of false alarm probability of 0.001 and 
0.0001 we get better results for training a network with 
the fixed number of patterns and the curve (blue) is 
much closer to the theoretical one (red).  For the high 
SNR values the results could be improved, which could 
make a part of the future lines of investigation. 
 

3.3. Critical error probability 0.15 
 
Fig. 7 shows the results obtained for setting the 
threshold for changing the weighting functions at 0.15.  
Again, we considered two criterions for stopping the 
training of a network, when error reaches zero and with 
the fixed number of patterns. 
 
We can see that the decision to change the weighting 
function when the threshold 0.15 was reached gave the 
satisfying results because the training continued 
lowering the error value.  Fig. 8, 9 and 10 show 
characteristics of trained networks for false alarm 
probabilities, Pfa, of 10-2, 10-3 and    10-4.  The results 
obtained are better in the case of training a network with 
the fixed number of patterns, as it was with the threshold 
of 0.2. 
 
Finally, in both cases training continued over the 
limiting value detected using only one weighting 
function. 

 
 

 
Fig. 7.  Classification Error in Training Phase, Threshold 

0.15. 
 
 
 

 
Fig. 8.  Detection Probability, Pfa=10-2, Threshold 0.15 

 
 
 

 
Fig. 9.  Detection Probability, Pfa=10-3, Threshold 0.15 
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Fig. 10.  Detection Probability, Pfa=10-4, Threshold 

0.15. 

 

3.4. The best obtained network 
 
The error probability evolution of the best network 
obtained is shown in Fig. 11.  Only 355 iterations were 
needed to reach the zero classification error.  We can see 
that the network has a rapid error evolution to the zero 
value, with a low number of iterations.  This allows us to 
save time and resources.  The threshold for changing the 
weighting function was set to 0.2. Fig. 12, 13 and 14 
show the characteristics of trained network for false 
alarm probabilities, Pfa, of 10-2, 10-3 and 10-4.  We can 
see that the distance between two curves is less than 1 
dB.  Even though the number of iterations used was 
small, we can conduct the training with fixed number of 
patterns and get values even closer to the theoretical 
maximum.  These results demonstrate, one more time, 
the performance of NNs achieved by training with the 
small number of iterations using BPW criterion with two 
weighting functions.  We generated NNs with similar or 
better characteristics than those obtained using BPW 
with only one weighting function or the classical BP.  
From this last experiment we just may extract some 
conclusions about the performance a neural detector 
trained by BPW might reach in the most favorable 
conditions. 

 
Fig. 11.  Classification Error in Training Phase, 

Threshold 0.2, The Best Case 
 

 
Fig. 12.  Detection Probability, Pfa=10-2, Threshold 0.2, 

The Best Case 
 

 
 

Fig. 13.  Detection Probability, Pfa=10-3, Threshold 0.2, 
The Best Case 
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Fig. 14.  Detection Probability, Pfa=10-4, Threshold 0.2, 
The Best Case 

 
 
4 Conclusions 
 
Under the hypothesis that giving more relevance during 
learning to less frequent training patterns and subtracting 
relevance to frequent ones is a way to model of 
metaplasticity biological properties in artificial neurons 
for the case of general ANNS where an error 
minimization is the strategy for learning. Mathematical 
equations that support the viability of the proposed 
method have been outlined. We apply the statistical 
distribution of training patterns to quantify how frequent 
a pattern is in an application of MLP with error 
Backpropagation training, finding that the metaplasticity 
weighting training proposed requires much less training 
patterns maintaining the ANN performance, what makes 
the proposed training strategy and algorithm very 
interesting when a low number of patterns are available 
to train the ANN. 
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