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Abstract: - Several types of neural plasticity must be perfectly orchestrated for a proper functioning of 
biological neural networks. In this work we present a computer simulation of the Alzheimer's Disease, taking 
into account one of the most accepted models of Alzheimer's Disease: the calcium dysregulation hypothesis. 
According to Cudmore and Turrigiano calcium dysregulation alters the shifting dynamic of the neuron’s 
activation function (intrinsic plasticity). We propose that this alteration might affect the stability of synaptic 
weights in which memories are stored. This hypothesis was simulated using a biologically plausible artificial 
neural network. The results of the simulation supported the theoretical hypothesis. In this way, intrinsic 
neuronal plasticity impairment due to calcium dysregulation might justify the emergence of Alzheimer's 
disease's symptoms such as memory loss and learning problems. 
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1 Introduction 
 
Although the Alzheimer's Disease (AD) was first 
documented by Alois Alzheimer[3] one hundred 
years ago, the understanding of its ultimate cause 
still represents a mystery to neurobiology. There 
are many theories for the disease mechanism, 
including the cholinergic hypothesis [4], the Tau 
hypothesis [5], the Amyloid hypothesis [6] and the 
recent Calcium dysregulation hypothesis [7]. The 
calcium dysregulation hypothesis (CDH) of brain 
aging and AD [1],[8],[9],[10], suggests that aging 
alters brain Ca2+ regulation, impairing neuronal 
function and leading to neurodegeneration. In this 
article, we present a formal method of simulating 
the effects of the dysregulation of Calcium in an 
artificial neural network to allow a better 
understanding on how the AD takes place. We do 
not intend, however, to give an extensive account 
of the processes in which calcium is involved, as 
this can be found elsewhere [1][2][6][7][8][9]. We 
merely will focus our study in the effect produced 
by calcium dysregulation on the dynamic of the 
neuron’s activation function and in the 
consequences of this effect on memory and 
learning. 
 

In the following section (section 2) we present an 
introduction to the regulatory mechanisms of 
neuronal plasticity, to allow the understanding of 
the biological process involved in the CDH (section 
3). In section 4 we introduce the neural network 
computational model that makes use of the 
neuronal plasticity properties explained in section 
3. The experimental setup of the simulation 
utilizing MathWorks's MatLAB is also explained. 
Section 5 presents the results obtained when 
intrinsic neuronal plasticity is hampered, according 
to the calcium dysregulation hypothesis. Finally 
section 6 compares experimental and expected 
results, concluding that the results of the simulation 
are consistent with the memory loss and learning 
impairments in AD. 
 
2 Homeostatic mechanisms of 
neuronal plasticity. 
Neurons display complex adaptable responses for 
regulating the input stimuli from synapses and also 
the output generated in the cellular soma.  
The regulation of an internal environment so as to 
maintain a stable, constant condition is also called 
homeostasis, which was a term coined by Walter 
Bradford Cannon in 1932.  
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In this paper two relevant regulatory or homeostatic 
mechanisms of neuronal activity will be presented: 
metaplasticity and intrinsic plasticity. For a correct 
understanding of these two mechanisms we will 
start first with an introduction to synaptic plasticity. 
 
2.1 Synaptic plasticity 
The transmission of information between neurons 
is mediated by molecules known as 
neurotransmitters that act on synapses, and interact 
with ionic channels residing in the synaptic 
membrane, thereby allowing the inflow or outflow 
of positive and negative ions such as potassium, 
sodium, chlorine and calcium. Synaptic plasticity, 
refers to the modulation of the efficacy of 
information transmission between neurons, being 
related to the regulation of the number of ionic 
channels in synapses. 
The first model of synaptic plasticity was 
postulated by Hebb and is known as the Hebb 
rule[11] that is stated as follows: when two neurons 
fire together wire together or, in other words, the 
synaptic strength between neurons with a correlated 
firing tends to increase. Mathematically the change 
in the synaptic strength (synaptic weight) between 
neurons i and j is calculated by the product of the 
output of neuron i and the input Ij (which 
corresponds to the output of neuron j) multiplied by 
a learning constant. 
 
    (1) 
  
Some authors proposed revised versions of the 
Hebb's rule, taking into account more recent 
biological studies [12]. The formulation that was 
adopted for our simulation of synaptic plasticity, 
due to its biological plausibility, is the Grossberg's 
presynaptic learning rule [13] either in its 
incremental or in its probabilistic version . 
The incremental version of the pre-synaptic rule is 
as follows: 
 
  (2) 
 
 
According to Minai [14], this incremental version 
of the pre-synaptic rule is asymptotically equivalent 
to the following probabilistic version (Eq.3), where 
the synaptic weight between two neurons is the 
conditional probability of the output neuron’s 
firing, given that the input neuron have previously 
fired. 
 
    (3) 
 

2.2 Synaptic metaplasticity 
One of the important biological characteristics of 
the presynaptic rule is that it also models 
metaplasticity, which is an important homeostatic 
mechanism of neurons.  It slows down the process 
of weight increment or decrement, making more 
difficult for the neuron to become either inactive or 
saturated. 
The property of metaplasticity [15] is shown in 
Fig.1 representing a family of curves in which each 
curve yields the variation of weight given the 
neuron’s activation. The parameter that defines 
what curve must be used is the value of the 
synaptic weight.  According to Fig.1, for higher 
values of the weight the curves are more elongated 
rightwards. 
 

 
This means that in synapses with higher weights, 
the interval in which the variation of weight is 
negative is broader, thereby favoring synaptic 
depression. The opposite takes place in the lower 
weight curves. 
Synaptic metaplasticity is a homeostatic 
mechanism because it regulates weight variation, 
down-regulating weight increment in synapses with 
initial high weights and up-regulating weight 
increment in synapses with initial low weights.  
 
2.2 Intrinsic plasticity 
 Although synaptic metaplasticity makes it difficult 
for synaptic weights to become either null or 
saturated, it does not totally preclude either of these 
two extreme situations. For totally precluding the 
possibility of either weight annihilation or 
saturation, another important homeostatic property 
of real neurons should be taken into account: the 
so-called intrinsic plasticity.  
Intrinsic plasticity regulates the position (rightward 
shift) of the neuron’s activation function, which is 
usually modeled as a sigmoidal function: 
    

    (4) 
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Fig. 1: Synaptic metaplasticity 
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In which O is the output probability of the neuron 
and “a” is the activation function given by the sum 
of synaptic contributions. 
Intrinsic plasticity was modeled according to the 
following equation that yields the position of the 
sigmoid in terms of the previous position shift-1 and 
the previous sigmoid output. 

 
 
                                                                (5) 

 
 
 
Parameter ξ  determines the velocity of the 
sigmoid shifting. This equation means that the 
more the neuron keeps firing, the higher will be the 
rightward shift of the activation function, leading to 
a moderation of the neurons’ firing probability in 
the future. Conversely, if the firing probability is 
low, the sigmoid will move leftwards, thereby 
increasing the probability of the neuron’s firing in 
the future 

We simulate the effects of the calcium 
dysregulation by setting ξ  in Eq. 4 to zero, so that 
the shifting dynamics of the sigmoid is stopped, 
destroying the effect of intrinsic plasticity. In this 
way, without the compensatory mechanism of 
intrinsic plasticity, weights are free to increase or 
decrease without bound.  
 
3 The Calcium Dysregulation 
Hypothesis 
The calcium dysregulation hypothesis (CDH) is 
referred to a broad category of calcium-dependent 
neural processes related to the gradual impairment 
of cognitive abilities in AD, especially those related 
to memorizing and learning. Thibault and 
colleagues [1] enumerate some of these calcium-
dependent processes like the increase in slow after-
hyperpolarization (AHP), reduction of long-term 
potentiation (LTP), enhancement of  long-term 
depotentiation (LTD) and impairment of short-term 
frequency facilitation (FF). In most of these cases, 
the role of Ca2+ is correlated to changes in 

plasticity, although the exact mechanism explaining 
this correlation remains uncertain. However, in the 
case of intrinsic plasticity, Cudmore and Turrigiano 
[19] showed that there is a clear relationship 
between intrinsic plasticity and Ca2+ influx. 
Reducing extracellular calcium, prevents the 
leftward shifting of the activation function curve. In 
this way, if calcium influx is altered, a 
dysregulation in the shifting dynamic of the 
activation function takes place. In the following 
simulations we will show that the dysregulation of 
the shifting dynamic of the activation function 
leads to the alteration of synaptic weights, where 
memories are encoded.  Synaptic weight 
destabilization might be an explanation of the 
impairment in memory retrieval and in learning in 
AD. 
The same equations used in this section were 
described in [15] and used successfully to describe 
and simulate other type of neural 
disorders[16][17][18]. 
 
3 Computer Simulation 
For allowing a better understanding of the 
relationship between calcium dysregulation and 
cognitive loss, a computational simulation was 
performed. 
 In this simulation, a small artificial neural 
network of 30 sparsely connected neurons was 
studied.  The synaptic weights of each one of these 
neurons were modified according to the presynaptic 
learning rule Eq. 3. The shift of the sigmoidal 
activation functions of these neurons is calculated 
according to Eq. 5. The neuronal network is 
exposed repetitively to a series of 5 patterns that 
were presented to 5 neurons considered as “input” 
neurons. The whole presentation of these 5 patterns 
was considered an “epoch” of patterns, according 
to the neural networks terminology. 
After 150 epochs, the network weights reached 
either static or dynamic equilibrium in a predictable 
behavior. For simulating the starting point of the 
Alzheimer Disease, the shift variations of all 
neurons in the network are suddenly hampered by 
setting the shifting velocity ξ  to zero. In this way, 
we simulate the cessation of intrinsic plasticity 
dynamics caused by calcium dysregulation. 
 
 
5 Results 
The simulation was written in MathWorks's 
MatLAB. The network is implemented as a 30x30 
sparse matrix of weights, with the probability of 
having positive weights equal to 0.10 and a 

 
Fig. 2: Intrinsic plasticity 
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probability of having negative weights 
(representing inhibitory neurons) equal to 0.30. 
According to biology, neurons in the model are 
either excitatory or inhibitory, without any neuron 
being excitatory and inhibitory at the same time. 
All neurons have the same sigmoid function given 
by Eq. 4 for calculating the action potential 
probability from incoming synaptic activation. The 
shift of the sigmoid is initially set to 0.5 whereas ξ  
is set to 0.01 during the first 150 epochs of the 
simulation. 
At the beginning of each simulation, five input 
patterns are randomly generated and continuously 
input to 5 neurons acting as inputs for the network 
during 150 epochs. After this number of iterations, 
the shifting velocity ξ  is zeroed, stalling the 
sigmoid dynamic. 
The results are a set of graphs showing the outputs 
of each of the 30 neurons in the network as the 
simulation progresses.  
 
The simulation yielded three different categories of 
results that are exemplified by the  
following pair of graphs. 
 
Each pair of graphs represents the variation of the 
outputs and weights in the network along the 
different epochs. The graphs at the left indicate the 
outputs of each of the 30 neurons during the 
presentation of the last pattern of each epoch. The 
graphs at the right show the norm of the 30x30 
matrix containing the synaptic weights. This norm 
was calculated with the norm function of the 
Matlab program. 
 

 
Fig. 3: The synaptic weights are seriously 
disrupted by the sigmoid stall 
  
In 80% of the random simulated networks, synaptic 
weight lose their stability after the sigmoid stall, 
resulting in graphs similar to Fig. 3. 

Around 25% of the random simulated networks 
exhibits an oscillatory, burst-like behavior during 
the first phase of the simulation. This behavior is 
lost after the sigmoid stall in the second phase of 
the simulation, as is exemplified in Fig. 4. No 
network exhibiting burst behaviour continues 
bursting after the stall of the sigmoid dynamics.  
 

 
Around 20% of the randomly initialized networks 
continue behaving as in the initial phase, so that 
even after the sigmoid stall, no significant change 
in the network is perceived, as exemplified in Fig. 
5. This is consistent with the fact that a reduce 
number of patients with Azheimer disease do not 
exhibit memory or learning impairments. 
 
6 Conclusions 
In this paper we have shown that calcium 
dysregulation might be the starting point of a 
cascade of events leading to the lose of synaptic 
weight stability and, thereby, to the lose of the 
memories stored in synaptic weights. This might 
explain memory deficits in Alzheimer’s disease 
patients. 
According to Cudmore and Turrigiano [19], the 
inflow of calcium is determinant in intrinsic 
plasticity. Intrinsic plasticity is a homeostatic 
mechanism that shifts the activation function to the 
right or to the left depending on the degree of 
synaptic activation of the neuron, so that the neuron 
is never zeroed or saturated. At the same time 
intrinsic plasticity leads to a stability of weights. 
When the compensatory mechanism of intrinsic 
plasticity is disrupted synaptic weights may lose 
their stable values. 
We have tested this hypothesis by training a neural 
network until weights reached a stable situation. 
Afterwards, the shifting dynamics of the activation 
function is hampered. The computational model 
shows that, although in some cases synaptic 
weights remain stable, in most of the cases they 
enter in a situation of instability. These results are 

Fig. 4: Burst activation behavior is lost after 
sigmoid stall 

Fig. 5: In this particular random network, 
the effect of the sigmoid stall is almost 
irrelevant
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confirmed with networks of different sizes 
(networks of 30, 50 and 100 neurons were tested 
with similar results) with different architecture of 
connections (in each simulation synaptic weights 
were initialized by a randomly generated sparse 
matrix in which we define the percentage of 
excitatory or inhibitory connections) and with 
different input patterns (that were also randomly 
initialized at the beginning of each simulation). 
These results show that calcium dysregulation that 
is correlated to the impairment of intrinsic 
plasticity, leads to synaptic instability, which is 
consistent with cognitive deficits in AD. 
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