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Abstract: - This work proposes how to generate a set of fuzzy rules from a data set using a clustering algorithm, 
the GKPFCM. If we recommend a number of clusters, the GKPFCM identifies the location and the 
approximate shape of each cluster. These ones describe the relations among the variables of the data set, and 
they can be expressed as conditional rules such as "If/Then". The GKPFCM provides membership and 
typicality values from which a knowledge base is generated through fuzzy rules, which can be used for the 
classification and characterization of new data. 
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1 Introduction 
There are a lot of problems in the real life where it 
is necessary to extract knowledge from a data set. 
Besides, a common way to express these relations 
is through conditional rules which can be used to 
interpret, to verify or even to make decisions about 
the identified states or characteristics of a system. 
The automatic extraction of knowledge from a data 
set is based on several methods, the clustering 
algorithms is one of them. 

With a clustering algorithm, the membership 
functions of fuzzy sets can be identified, and a set 
of fuzzy rules can be defined according to them [1-
3]. However, the problem with these algorithms is 
that they provide a partition of the characteristics 
space of the variables in such a way that every 
input data belongs to an identified class; and there 
is no distinction between data of the same class 
with high and small membership value. 

The GKPFCM (Gustafson Kessel Possibilistic 
Fuzzy c-Means) algorithm [4] is used in this work 
because it allows a better identification of the 
clusters, it provides the membership and the 
typicality values which make a fuzzy and a 
possibilistic partition of the space respectively, and 
sets of fuzzy rules can be identified from the results 

The membership functions provide a fuzzy 
partition of the space where data are defined. On 
the other hand, the typicality values have fewer 
restrictions among clusters and the sensitivity to 
noise can be adjusted. Using this characteristic of 
the possibilistic algorithm several clusters can be 
identified with their most representative data which 
gives the possibility to characterize the conclusion 
at the moment of new data classification. The 
proposed characterization corresponds to typical 
values, atypical values or noise. 

Some popular clustering algorithm are the 
Fuzzy c-Means (FCM) [5, 6] and the Possibilistic 
c-Means (PCM) [7], which can be used to identify 
the membership functions that will be the support 
to build a set of fuzzy rules. These clustering 
algorithms are among the developed hybrid 
clustering algorithms that have been developed as a 
more efficient solution to clusters identification in a 
dataset. 

Pal et al [8] proposed the Possibilistic Fuzzy c-
Means (PFCM) which provides the membership as 
those obtained with the FCM and the typicality 
obtained with the PCM. The PFCM is based in the 
Euclidian distance, so Ojeda et al [4] proposed an 
improvement to the algorithm resulting in the 
Gustafson-Kessel Possibilistic Fuzzy c-Means 
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(GKPFCM) algorithm, where the Mahalanobis 
distance and the Gustafson Kessel algorithm [9] are 
used for the covariance matrix calculus, resulting in 
the identification of clusters better adapted to the 
natural distribution of data. 

Once clusters have been identified, we propose 
to use Takagi-Sugeno (TS) fuzzy models [10] for 
the set of fuzzy rules identified, which allow to 
classify and to characterize new data that are 
presented at the input of the model. 

This work is organized as follows. Section two 
presents the clustering algorithms. Section three the 
fuzzy and possibilistic rules resulting from the 
application of the GKPFCM to a dataset. And the 
fourth and last section presents the main 
conclusions about this work. 
 
 
2 Clustering Algorithms 
The clustering algorithms can find c groups in a set 
of unlabelled data  Z={z1, z2, …, zn} into an M 
dimensional space, that is, the nearest data zk to a 
prototype, or center of a group vi, belong to this 
group. The membership of each data zk to the 
groups depends on the kind of partition of the space 
where the data set is defined. With a strict partition, 
a point belongs only to one group; with a fuzzy 
partition a point has a membership value to each of 
the groups, where the maximum membership 
indicates the group that makes the better 
description of the point and the sum of all the 
membership values of this point to all the groups is 
equal to one; and finally, in a possibilistic partition, 
where this last condition is relaxed, the 
compatibility of data with a group is represented 
through a typicality value [11, 12], that is, it takes 
into account that some data are more representative 
or typical than the others. 
 
 
2.1 Fuzzy c-Means Algorithm 
The Fuzzy c-Means (FCM) [5, 6] is an algorithm 
that calculates the membership value of each point 
(zk) to the subgroups Ai. This algorithm generates a 
matrix U, with values in the interval [0, 1], 
corresponding to the memberships and finds the 
values of the prototypes for all the subgroups. The 
membership of each point is relative to the distance 
among the point and the prototypes of the 
subgroups, that means, a point has the greater 
membership to the nearest subgroup while the 
membership value diminish as the distance with the 
rest of prototypes increases. 
 

2.2 Possibilistic c-Means Algorithm 
The Possibilistic c-Means Algorithm (PCM) [7] has 
as a main characteristic the relaxation of the 
constraint of the FCM about the sum of the 
membership values that must be one. This 
characteristic gives the opportunity to calculate the 
proximity of data with respect to a prototype, but 
independent of the other subgroups, and this 
proximity is represented through a typicality value 
in the interval [0, 1]. This is the reason why the 
nearest data to the prototypes are defined as typical. 
For this algorithm Krishnapuram and Keller [13] 
recommend to use the FCM algorithm in order to 
determine the initial values such that the PCM 
could have a good initialization. 
 
 
2.3 Gustafson-Kessel Possibilistic Fuzzy c-
Means Algorithm  
As it was shown in the previous sections, the fuzzy 
and the possibilistic clustering algorithm provide a 
different sight about the internal structure of a data 
set. That is why Pal et al. [14] have proposed a 
hybrid algorithm based on the FCM and the PCM 
in order to get a more robust clustering algorithm; 
this algorithm was called Fuzzy Possibilistic c-
Means (FPCM). Later, Pal et al. [8] have corrected 
an inconvenience with the typicality values of this 
algorithm and they rename the algorithm as 
Possibilistic Fuzzy c-Means (PFCM). 

Ojeda et al. [4] have made an improvement to 
the PFCM. This consists on the kind of distance 
DikA used and the method to calculate it. The PFCM 
uses the Euclidean distance whereas the Gustafson-
Kessel Possibilistic Fuzzy c-Means (GKPFCM) 
uses the Mahalanobis distance. Besides, the 
calculus of the distance is based on the Gustafson-
Kessel method [9] allowing calculating an adaptive 
distance such that clusters with different geometry 
can be identified in a data set. 

In the Gufstason-Kessel algorithm, the matrix Ai 
is defined by (1), 
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where n is the number of characteristics,  ρi the 
volume and Fi the covariance matrix of the group i. 
The calculus of Fi includes a proposal by Babuska 
et al. [15]. This one is shown in the equations (3) 
and (4). 
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Therefore, the calculus of distance in the 

GKPFCM algorithm is based on the equations (1) 
to (4). These equations with (5) to (7) provide the 
complete GKPFCM algorithm. 
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2.3 Example 
In order to show the performance of the GKPFCM 
algorithm, in this example the algorithm is applied 
to a data set generated with two ellipsoidal groups 
and an additive noise. The data set Z1200 contains 
1200 data in total; 400 data for each group and 400 
noisy data. The mean value of one group is          
(0, 2.5)T, and the other one is in (0, 0)T. The noise is 
distributed in a uniform way in the space                
[-12, 12]X[-7, 10]. 

The groups of this example have a covariance 
matrix identical and it is given by (8). The Fig. 1a 
shows the distribution of data Z1200. 
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For comparison, three clustering algorithms 

have been applied to the data set: the GKFCM, the 
PFCM and the GKPFCM. The results are in the 
Fig. 1b, Fig. 1c, and Fig. 1d. Table 1 shows the 
prototypes generated with these algorithms. 

 
 

Figure 1: (a) Dataset Z1200. Partition of the space 
with the algorithm: (b) GK, (c) PFCM, and (d) 

GKPFCM. 
 
 
 
Table 1: Prototypes produced by GKFCM, PFCM 

AND GKPFCM. 

Results for Z1200 

 
GKFCM 
(ρ=1, M=2, γ=2) 

v1 v2 
0.2126 -0.1688 
3.0565 -0.3061 

 
PFCM 
(a=1, b=5, m=2, η=2) 

v1 v2 
0.2005 -0.2276 
1.7506 0.7647 

 
GKPFCM 
(a=1, b=5, m=2, η=2) 

v1 v2 
0.0561 0.0027 
2.8887 -0.2421 
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3 Fuzzy Rules 
The GKPFCM algorithm provides the membership 
and the typicality values which can be the base to 
build a model consisting of fuzzy rules derived 
from the relation among variables for each cluster, 
and the membership functions of the fuzzy sets 
approximated from the shape of the clusters. 

Due to the flexibility of the possibilistic 
algorithms to take into account or to ignore the 
noise, it is possible to make the adjustment of the 
GKPFCM parameters such that the membership 
functions identified from the typicality values are 
centered in the most representative values of each 
cluster, ignoring or giving little importance to the 
furthest data. For example, thresholds can be used 
in order to identify the class of each new data, but 
also to describe it about its compatibility with the 
class assigned. From the highest threshold, the first 
group corresponds to data with the greatest 
typicality, the second group is composed of data 
with a smaller typicality, but greater than the 
second threshold, the third group contains data with 
typicality even smaller and this last group can be 
divided in subgroups. The thresholds depend on the 
knowledge and intuition about the range of values 
that can be considered as typical for a given 
problem. 

From here the interest to use the typicality 
values as a mean to build a fuzzy model as a way to 
get more information about new data that go into 
the system. If thresholds are given for both models, 
the total space is partitioned as shown in Fig. 2. As 
a result of the bounded space, each new data 
entering to the system will be identified as an 
element of a class and it will be also characterized 
as typical, atypical or noise. The fuzzy rules 
representing the knowledge are similar to the rules 
defined later. 

In this work it is proposed to generate fuzzy 
rules with hybrid algorithms, such as the 
GKPFCM, because the membership values of the U 
matrix and the typicality values of the T matrix are 
available. However, the fuzzy rules are separated 
into two models as a way to have a better 
interpretation of the data processed with both 
models. In this case one model is built with the 
memberships and the other one with the 
typicalities. The inference method elected for the 
rules is the one proposed by Takagi-Sugeno [10] 
where the conclusions are constant values or zero 
order functions.  

Fuzzy rules have one or several antecedents and 
one consequent. The antecedents depend on the 
input variables and the space where each rule is 
 

 

 
Figure 2: Decision frontier for the fuzzy and the 

possibilistic models. 
 
 

 
Figure 3: Adjusted gaussian functions from the 
orthogonal projections; solid lines for the UZ1200 
values and dashed   lines for the TZ1200 values.       

(a) Axe x. (b) Axe y. 
 
 
defined. This space is totally defined by the 
membership functions of the antecedent fuzzy sets. 
So, when learning fuzzy rules by the GKPFCM 
clustering algorithms, the fuzzy values of the 
antecedents result from the orthogonal projection of 
the U or T matrix over the universe of discourse of 
the variables. For two groups, as in the example, 
the corresponding fuzzy rules are: 
 

R11: If x is (Very) Small and  
           y is (Very) Small Then z =c1 
R12: If x is (Very) Small and  
           y is (Very) Big Then z =c2 

 
Once the orthogonal projections are available, 

the next step is the calculus of the membership 
functions for all the rules. These are obtained by a 
parametric adjustment of the kind of mathematical 
function selected for the membership functions 
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such as the triangular, the trapezoidal, the gaussian 
or any other monotone function. In the particular 
case of this example the functions are approximated 
by gaussians. The parameters of this function are 
the mean (µ) and the standard deviation (σ). The 
mean value is directly determined from the 
prototypes, so it suffices to approximate the (σ) 
value. 

When all the σ have been calculated, the result 
are gaussian functions as those of the Fig. 3a and 
Fig. 3b. In the same figures there are the functions 
resulting from the UZ1200 matrix, and the TZ1200 
matrix. 

As can be seen in Fig. 3a and Fig. 3b, the 
functions generated with the typicality values are 
narrower than those generated with the membership 
values. For this reason the linguistic term of the 
functions derived from the membership values is 
small and this is very small for the functions 
adjusted to the typicality values. The linguistic 
modifier very acts in the same way as proposed by 
Zadeh even if it does not correspond exactly to his 
definition, that is, very small = (small)2. In the same 
way, the linguistic terms for the fuzzy sets of the 
Fig. 3b are Small and Big when the functions have 
been adjusted with the membership values and Very 
Small and Very Big on the other case. 
 
 
4 Conclusions 
The goal of this work has been the generation of 
fuzzy rules from the membership and the typicality 
values of the GKPFCM, as a way to classify and to 
characterize new data. Two models were generated, 
which can be considered as redundant knowledge 
that provides two different interpretations of data, 
useful for their characterization. This conducts us 
to obtain a bigger and better knowledge from a data 
set. Besides, the selected method to get the clusters 
has been the GKPFCM which, as proved in this 
work, carries out a good identification of the 
clusters. This work proposes an improvement to the 
knowledge represented by means of fuzzy rules, 
since there are general rules generated through the 
membership values, but also more specific rules 
resulting from using typicality values. 
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