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Abstract: – The design of space-efficient support hardware for built-in self-testing (BIST) is of immense significance in the 
synthesis of present day very large-scale integration (VLSI) circuits and systems, particularly in the context of design paradigm 
shift from system-on-board to system-on-chip (SOC). This paper presents an overview of the general problem of designing zero-
aliasing or aliasing-free space compression hardware in relation to embedded cores-based SOC for single stuck-line faults in 
particular, extending the well-known concepts of conventional switching theory, and of incompatibility relation to generate 
maximal compatibility classes (MCCs) utilizing graph theory concepts, based on optimal generalized sequence mergeability, as 
developed by the authors in earlier works. The paper briefly presents the mathematical basis of selection criteria for merger of an 
optimal number of outputs of the module under test (MUT) for realizing maximum compaction ratio in the design, along with 
extensive simulation results on ISCAS 85 combinational and ISCAS 89 full-scan sequential benchmark circuits, with simulation 
programs ATALANTA, FSIM, and COMPACTEST. 
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1 Introduction 
 
VERY large-scale integration (VLSI) has added 
tremendous complexity to the test generation process of 
integrated circuits (ICs). With the unabated growth of the 
electronics industry, the integration densities and system 
complexities continue to increase, and thus the need for 
better and more efficient methods of testing of to guarantee 
reliable operations of chips, the mainstay of today’s many 
sophisticated devices and products, is being constantly felt 
[1–18]. The very concept of testing has a relatively broad 
applicability, and finding the most effective testing 
techniques that can guarantee correct system performance is 
of immense practical significance. Generally, the price of 
testing integrated circuits (ICs) is rather prohibitive, 
accounting for 35% to 55% of their total manufacturing 
cost. Besides, testing a chip is also time-consuming, taking 
up to about one-half of the total design cycle time. The 
amount of time available for manufacturing, testing, and 
marketing a product, on the other hand, is on the decline. 
Moreover, as a result of diminishing trade barriers and 
global competition, customers now demand products of 
better quality at lower cost. In order to achieve this higher 
quality at lower cost, evidently the testing methods have to 
be improved. The conventional testing techniques of digital 
circuits require application of test patterns generated by a 
test pattern generator (TPG) to the module under test (MUT) 
and comparing the responses with known correct responses. 
For large circuits, because of higher storage requirements 
for the fault-free responses, the usual test procedures are 
sought to minimize the amount of needed storage [16]. 

 
    Built-in self-testing (BIST) is a design process that 
provides the capability of solving many of the problems 
otherwise encountered in testing digital systems. It 
combines the concepts of both built-in test (BIT) and self-
test (ST) in one termed built-in self-test (BIST). In BIST, 
test generation, test application, and response verification 
are all accomplished through built-in hardware, which 
allows different parts of a chip to be tested in parallel, 
reducing thereby the required testing time, besides 
eliminating the necessity for external test equipment. As the 
cost of testing is becoming the single major component of 
the manufacturing expense of a new product, BIST thus 
tends to reduce manufacturing and maintenance costs 
through improved diagnosis. Several companies such as 
Motorola, AT&T, IBM, and Intel have incorporated BIST in 
many of their products [3, 4, 6–8]. AT&T, for example, has 
incorporated BIST into more than 200 of their IC chips. The 
three large programmable logic arrays (PLAs) and 
microcode ROM in the Intel 80386 microprocessor were 
built-in self-tested [16–18]. The general-purpose 
microprocessor chip, Alpha AXP21164, and Motorola 
microprocessor 68020, were also tested using BIST 
techniques [4]. More recently, Intel, for its Pentium Pro 
architecture microprocessor, with its unique requirements of 
meeting very high production goals, superior performance 
standards, and impeccable test quality put strong emphasis 
on its design-for-test (DFT) direction [8]. A set of 
constraints, however, limits Intel’s ability to tenaciously 
explore DFT and test generation techniques, viz. full-scan or 
partial-scan or scan-based BIST [2]. AMD’s K6 processor is 
a reduced instruction set computer (RISC) core named 
enhanced RISC86 microarchitecture [7]. K6 processor 
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incorporates BIST into its DFT process. Each RAM array of 
K6 processor has its own BIST controller. BIST executes 
simultaneously on all of the arrays for a predefined number 
of clock cycles that ensures completion for the largest array. 
Hence, BIST execution time depends on the size of the 
largest array [2]. AMD uses commercial automatic test 
pattern generation (ATPG) tool to create scan test patterns 
for stuck-faults in their processor. The DFT framework for 
500-MHz IBM S/390 microprocessor utilizes a wide range 
of tests and techniques to guarantee superb reliability of 
components within a system [2]. Register arrays are tested 
through the scan chain, while nonregister memories are 
tested with programmable RAM BIST. Hewlett-Packard’s 
PA8500 is a 0.25-μm superscalar processor that achieves 
fast but thorough test with its cache test hardware’s ability 
to perform March tests, which is an effective way to detect 
several kinds of functional faults [6]. Digital’s Alpha 21164 
processor combines both structured and ad hoc DFT 
solutions, for which a combination of hardware and 
software BIST was adopted [2]. Sun Microsystems’ 
UltraSparc processor incorporates several DFT constructs as 
well. The achievement of its quality performance coupled 
with reduced chip area conflicts with a design requirement 
that is easy to debug, test, and manufacture [2]. 
    BIST is widely used to test embedded regular structures 
that exhibit a high degree of periodicity such as memory 
arrays (SRAMs, ROMs, FIFOs, and registers). A typical 
BIST environment uses a TPG that sends its outputs to an 
MUT, and output streams from the MUT are fed into a test 
data analyzer. A fault is detected if the test sequence is 
different from the response of the fault-free circuit. The test 
data analyzer is comprised of a response compaction unit 
(RCU), storage for the fault-free responses of the MUT, and 
a comparator. In order to reduce the amount of data 
represented by the fault-free and faulty MUT responses, 
data compression is used to create signatures (short binary 
sequences) from the MUT and its corresponding fault-free 
circuit. Signatures are compared and faults are detected if a 
match does not occur. BIST techniques may be used during 
normal functional operating conditions of the unit under test 
(on-line testing), as well as when a system is not carrying 
out its normal functions (off-line testing). In the case where 
detecting real-time errors is not that important, systems, 
boards, and chips can be tested in off-line BIST mode. BIST 
techniques use pseudoexhaustive or pseudorandom test 
patterns, or sometimes on-chip storing of reduced or 
compact test sets. Today, testing logic circuits exhaustively 
is seldom used, since only a few test vectors are needed to 
ensure full fault coverage for single stuck-line faults [16–
18]. Reduced pattern test sets can be generated using 
existing algorithms such as FAN, and others [1, 2]. Built-in 
test generators can often generate such reduced test sets at 
low cost, making BIST techniques suitable for on-chip self-
testing. 

    The subject paper focuses primarily on the response 
compaction process of BIST techniques that basically 
formulate into realizing appropriate means of reducing the  

 

test data volume coming from the MUT to a signature. The 
response compaction in BIST is carried out through a space 
compaction unit followed by time compaction. In general, P 
input sequences coming from an MUT are fed into a space 
compactor, providing L output streams of bits such that L 
<< P; most often, test responses are compressed into only 
one sequence (L = 1). Space compaction brings a solution to 
the problem of achieving high-quality BIST of complex 
chips without the necessity of monitoring a large number of 
internal test points, reducing thereby testing time and area 
overhead by merging test sequences coming from these 
internal test points into a single stream of bits [11–13]. This 
single bit stream of length H is ultimately fed into a time 
compactor, and a shorter sequence of length B (B < H) is 
obtained at the output [9, 10]. The extra logic representing 
the compaction network, however, must be as simple as 
possible, to be easily embedded within the MUT, and 
should not introduce signal delays to affect either the test 
execution time or normal functionality of the module being 
tested. Moreover, the length of the signature must be as 
short as possible in order to minimize the amount of 
memory needed to store the fault-free response signatures. 
Also, signatures derived from faulty output responses and 
their corresponding fault-free signatures should not be the 
same, which unfortunately is not always the case. A 
fundamental problem with compaction techniques is error 
masking or aliasing [16–18] which occurs when the 
signatures from faulty output responses map into the fault-
free signatures, usually calculated by identifying a good 
circuit, applying test patterns to it, and then having the 
compaction unit generate the fault-free references.  

    A major challenge in realizing efficient space compaction 
in BIST is the development of techniques that are simple, 
suitable for on-chip self-testing, require low area overhead, 
and have little adverse impact on the MUT performance. 
With this perspective in focus, this paper revisits the general 
problem of designing zero-aliasing BIST support hardware 
with applications targeted towards embedded cores-based 
system-on-chip (SOC) [15, 18], extending the well-known 
concepts of conventional switching theory, particularly 
those of cover table and frequency ordering commonly 
utilized in the simplification of switching functions, and of 
incompatibility relation as employed in the minimization of 
incomplete sequential machines, using graph theoretic 
concepts in the design [22–25], based on optimal 
generalized sequence mergeability as developed and applied 
by the authors in earlier works [14], for detectable single 
stuck-line faults of the MUT. This paper makes use of 
mathematically sound selection criteria of merger of an 
optimal number of output lines of the MUT to decide on the 
logic for zero-aliasing, achieving maximal compaction ratio 
in the process, as is evident from extensive simulation 
experiments conducted on ISCAS 85 combinational and 
ISCAS 89 full-scan sequential benchmark circuits. 
 
2 Implementation of zero-aliasing space compression – 
mathematical basis 
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The mathematical basis [15] underlying the realization of 
proposed zero-aliasing space compaction is outlined in the 
following for the sake of clear understanding and 
completeness. 
Property 1 Let A and B represent two of the outputs of an 
MUT. Let these MUT outputs be merged by a gate from the 
logic family AND/NAND, OR/NOR, and XOR/XNOR, and 
let the gate output be z1. Then, we might envisage the under 
noted possible scenarios: 

    Case 1 Fault-free (FF) outputs = Faulty (F) outputs 
(outputs subject to the condition of MUT having faults), viz. 
FF = F ⇒ Outputs A and B of the MUT do not detect any 
faults, and faults are hence not detectable at z1. 

    Case 2 Only the faults that occur at A and B (subject 
to the condition of MUT having faults) are detectable at z1 
⇒ FF ≠ F. 

    Case 3 Faults occur at A and B but either all or some 
are not detectable at z1 ⇒ FF ≠ F. In this case, the faults 
missed at z1 are detected additionally at other outputs of the 
MUT (besides A and B). 
Definition 1 Let A, B, C, … be the different outputs of an n-
input m-output MUT. Let the faults detected at the MUT 
outputs A, B, C, … be θ where θ ≤ β, the total number of 
detectable faults at the MUT outputs when subjected to a 
compacted set of deterministic tests τ, τ ≤ 2n, τ might not be 
a minimal or nonminimal but complete set of tests, or to 
pseudorandom tests. Assume that the fault situation at the 
two outputs A, B conforms to conditions of Cases 1-2 above 
(but not Case 3). If the MUT outputs A, B are now merged 
by an AND(NAND) gate, we define output lines A, B to be 
strongly AND(NAND) compatible, written as 

 (AB) s-AND(NAND) compatible. 
Definition 2 Let A, B, C, … be the different outputs of an n-
input m-output MUT. Let the faults detected at the MUT 
outputs A, B, C, … be θ where θ ≤ β, the total number of 
detectable faults at the MUT outputs when subjected to a 
compacted set of deterministic tests τ, τ ≤ 2n, τ might not be 
a minimal or nonminimal but complete set of tests, or to 
pseudorandom tests. Assume that the fault situation at the 
two outputs A, B conforms to conditions of Case 3 (but not 
Cases 1-2). If the MUT outputs A, B are now merged by an 
AND(NAND) gate, we define output lines A, B to be 
weakly AND(NAND) compatible, written as 

 (AB) w-AND(NAND) compatible. 
Definition 3 Let A, B, C, … be the different outputs of an n-
input m-output MUT. Let the faults detected at the MUT 
outputs A, B, C, … be θ where θ ≤ β, the total number of 
detectable faults at the MUT outputs when subjected to a 
compacted set of deterministic tests τ, τ ≤ 2n, τ might not be 
a minimal or nonminimal but complete set of tests, or to 
pseudorandom tests. Assume that the fault situation at the 
two outputs A, B conforms to none of the conditions as 
specified by Cases 1-3. If the MUT outputs A, B are now 
merged by an AND(NAND) gate, we define output lines A,  
B to be AND(NAND) incompatible, written as 

 (AB) AND(NAND) incompatible. 
    We can similarly define two lines (AB) being s-
OR(NOR) compatible, w-OR(NOR) compatible, OR(NOR) 

incompatible, s-XOR(XNOR) compatible, w-XOR(XNOR) 
compatible, and XOR(XNOR) incompatible. 
Definition 4 Let A, B, C, … be the different outputs of an n-
input m-output MUT. Let the faults detected at the MUT 
outputs A, B, C, … be θ where θ ≤ β, the total number of 
detectable faults at the MUT output when subjected to a 
compact set of deterministic tests τ, τ ≤ 2n, τ might not be a 
minimal or nonminimal but complete set of tests, or to 
pseudorandom tests. Assume that the fault situation at the 
outputs A, B conforms to either one of the three conditions 
as specified by Cases 1-3, but unknown to us. If the MUT 
outputs A, B are merged under these conditions by an 
AND(NAND), OR(NOR), or XOR(XNOR) gate, then we 
define output lines A, B to be simply AND(NAND), 
OR(NOR), or XOR(XNOR) compatible, written as  
 (AB) AND(NAND), OR(NOR), or XOR(XNOR) 
                        compatible. 
Theorem 1 Let A, B, C, … be the different outputs of an n-
input m-output MUT. Let the faults detected at the MUT 
outputs A, B, C, … be θ where θ ≤ β, the total number of 
detectable faults at the MUT outputs when subjected to a 
compacted set of deterministic tests τ, τ ≤ 2n, τ might not be 
a minimal or nonminimal but complete set of tests, or to 
pseudorandom tests. Assume that the fault situation at the 
outputs A, B conforms to conditions of Cases 1-2 above, so 
that the outputs A, B are s-AND(NAND) compatible. 
Similarly, let the outputs B, C be s-AND(NAND) 
compatible, and the outputs A, C be s-AND(NAND) 
compatible. Then the outputs (ABC) are s-AND(NAND) 
compatible and all faults are detectable at z1. 
Theorem 2 Let A1, A2, … , Am be the different outputs of an 
n-input m-output MUT. Let the faults detected at the MUT 
outputs A1, A2, … , Am be θ where θ ≤ β, the total number 
of detectable faults at the MUT outputs when subjected to a 
compacted set of deterministic tests τ, τ ≤ 2n, τ might not be 
a minimal or nonminimal but complete set of tests, or to 
pseudorandom tests. Assume that the fault situation at the 
outputs A1, A2, … , Am conforms to conditions of Cases 1-2 
above, so that the outputs (A1A2…Am) are s-AND(NAND) 
compatible. Then, all faults are detectable at z1. 
Theorem 3 Let A, B, C, … be the different outputs of an n-
input m-output MUT. Let the faults detected at the MUT 
outputs A, B, C, … be θ where θ ≤ β, the total number of 
detectable faults at the MUT outputs when subjected to a 
compacted set of deterministic tests τ, τ ≤ 2n, τ might not be 
a minimal or nonminimal but complete set of tests, or to 
pseudorandom tests. Assume that the fault situation at the 
outputs A, B conforms to conditions of Cases 1-2 above, so 
that the outputs A, B are s-OR(NOR) compatible. Similarly, 
let the outputs B, C be s-OR(NOR) compatible, and the 
outputs A, C be s-OR (NOR) compatible. Then the outputs 
(ABC) are s-OR(NOR) compatible and all faults are 
detectable at z1. 
Corollary 3.1 Let A1, A2, … , Am be the different outputs of 
an n-input m-output MUT. Let the faults detected at the 
MUT outputs A1, A2, … , Am be θ where θ ≤ β, the total 
number of detectable faults at the MUT output when 
subjected to a compact set of deterministic tests τ, τ ≤ 2n, τ 
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might not be a minimal or nonminimal but complete set of 
tests, or to pseudorandom tests. Assume that the fault 
situation at the outputs A1, A2, … , Am conforms to 
conditions of Case 3 above, so that the outputs A1, A2, … , 
Am are w-AND(NAND) compatible. Then all faults may or 
may not be detected at z1. 
    Again, identical conclusions can be derived if lines 
(ABC) are w-OR(NOR) compatible, w-XOR(XNOR) 
compatible, or a number of lines A1, A2, … , Am are w-
OR(NOR) compatible, w-XOR(XNOR) compatible. 
    In actual situations, we do not know (and also it is rather 
difficult to know) whether the merged outputs conform to 
conditions specified by Cases 1-3 as discussed, and as such 
we have to deal exclusively with the case of simply 
compatible. However, very recently, a novel approach to the 
solution of the problem utilizing the concept of fault grading 
[26] has been proposed, which renders the developed 
mathematical basis underlying the notion of strong and 
weak compatibilities really meaningful. But since this paper 
does not address the theory underlying that approach, it 
becomes necessary to check here every possible MUT 
output pair in a group for being simply compatible 
(AND/NAND, OR/NOR, or XOR/XNOR) to form a larger 
maximal or nonmaximal compatibility class. 
 
3 Graph theoretic concepts and implementation of 
design approach 
 
An important problem in relation to designing zero-aliasing 
space compression networks as proposed herein is to first 
find the sets of maximal compatibility classes (MCCs) of 
response data outputs of the MUT for logic families 
AND/NAND, OR/NOR, and XOR/XNOR, given the 
information of the corresponding pairs of incompatibles. In 
this paper, use has been made of available graph theoretic 
approaches in the solution of the problem. Some relevant 
basic concepts of graph theory as used in the paper in this 
regard might be relevant here for the sake of completeness 
[22, 24, 25]. 
 
A Approach based on generation of maximal complete 
subgraphs or cliques of undirected graphs using Bron-
Kerbosch alogorithm 
 
Some important basic definitions are given as follows. 
Definition 5 An undirected graph A = (V, E). is defined as 
an ordered pair consisting of a finite set V of nodes or 
vertices, and a set of unordered pairs (v, w) of distinct 
vertices called edges. Any two vertices v, w in A are said to 
be adjacent to each other if (v, w) ∈ E. A set S of vertices of 
A is a complete subgraph if (v, w) ∈ E for all pairs of 
distinct vertices v, w ∈ S. A maximal complete subgraph or  
clique of an undirected graph A is a complete subgraph that 
is not contained in any other complete subgraph of A. The 
complement of an undirected graph A = (V, E) is the graph 
Ā = (V, Ē), where Ē = {(v, w)⏐v, w ∈ G, v ≠ w, and (v, w) 
∉ E}. 

    It is important to observe here that this clique detection 
problem of graph theory is identical to the problem of 
deriving the collection of maximal compatibility classes 
(MCCs) in a set of elements with compatibility relation. The 
maximal compatible problem as a counterpart of the clique 
problem has again been investigated by many authors in 
various disciplines. It is appropriate to remark here that the 
clique generation problem like some of the classical 
problems of combinatorics is an NP-complete problem [16], 
and as such is quite intractable. 
    Bron et al. [22] developed two backtracking algorithms 
for generating all cliques, using a branch-and-bound 
technique that cuts off branches that cannot lead to a clique. 
These algorithms were subsequently reported by Bron and 
Kerbosch and commonly known as Bron-Kerbosch 
algorithm in the literature [24]. Their first version is a 
straightforward implementation of the basic algorithm and 
generates cliques in a lexicographic order. The second 
version is derived from the first and generates cliques in an 
unpredictable order in an attempt to minimize the number of 
branches to be traversed. The authors implemented their 
algorithms with others. For the Moon-Moser graphs, the 
authors’ second test case, the processing time for the first 
version was found proportional to 4k, whereas for the 
second version of the algorithms, it was proportional to 
3.14k, for some constant k characteristic of the graphs. The 
algorithms need at most ½(M+3) storage locations to 
contain arrays of small integers, where M is the size of the 
largest connected component in the input graph. In our 
proposed approach for zero-aliasing space compaction, use 
has been made specifically of this well known Bron-
Kerbosch algorithm for the generation of maximal 
compatibles (cliques) of response data outputs for logic 
families AND/NAND, OR/NOR, and XOR/XNOR, based 
on information of their pairs of incompatibles. 
 
B Approach based on generation of maximal minimally 
strongly connected (MMSC) subgraphs – concepts 
 
Definition 6 Consider an undirected graph A with n vertices, 
vi, i = 1, 2, … , n. Two subgraphs Aa and Ab of A are said to 
be complementary to each other, if and only if, both Aa and 
Ab have the same set of vertices and one has edges 
connecting between those pairs of vertices that are not 
connected by edges in the other. 
Definition 7 Consider a vertex vi in an undirected graph A. 
The degree of vi, d(vi), is the number of edges of A incident 
in vi. The degree complement of a vertex vi, d′(vi), is the 
degree of the vertex vi in the complementary graph Ā. Two 
vertices vi and vj in A are said to be minimally strongly 
connected, if and only if, vi is reachable from vj by a path of 
length 1. Otherwise, the vertices, if connected, are said to be  
nonminimally strongly connected. The degree complement 
of a nonminimally strongly connected pair of vertices (vi, vj) 
in A is written as d′(vi, vj) = (k1, k2), where d′(vi) = k1, d′(vj) 
= k2. 
Definition 8 A subgraph As of A is said to be minimally 
strongly connected (MSC), if and only if, every possible 
pair of vertices in As is minimally strongly connected. The 
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subgraph As is said to be maximal minimally strongly 
connected (MMSC) if there does not exit any vertex outside 
of As which is minimally strongly connected with all the 
vertices of As. 
Definition 9 Let (vi, vj) be a nonminimally strongly 
connected pair of vertices in A. Then splitting A into two 
subgraphs Ai and Aj such that Ai contains the vertex vi and 
Aj contains the vertex vj is to obtain two subgraphs Ai and 
Aj from A such that Ai contains all the vertices of A except 
vj and Aj contains all the vertices of A except vi, both Ai and 
Aj having all the existing edges of A connecting between 
relevant pairs of vertices. Obviously, Ai ⊆ A; Aj ⊆ A. 
Definition 10 For any two distinct nonminimally strongly 
connected pairs of vertices (vi1, vj1) and (vi2, vj2) in A, let 
d′(vi1, vj1) = (k1, k2) and d′(vi2, vj2) = (r1, r2). If k1 + k2 > r1 + 
r2, then an ordering of the degree complements of the pairs 
of vertices can be made as d′(vi1, vj1) ≥ d′(vi2, vj2), whereas, 
if k1 + k2 < r1 + r2, the ordering of the degree complements 
of the pairs of vertices can be made as d′(vi2, vj2) ≥ d′(vi1, 
vj1). If, however, k1 + k2 = r1 + r2, the ordering can be made 
either as d′(vi1, vj1) ≥ d′(vi2, vj2), or as d′(vi2, vj2) ≥ d′(vi1, vj1). 
This kind of ordering (≥) that can be established among 
degree complements of different nonminimally strongly 
connected pairs of vertices in an undirected graph is called 
the magnitude ordering of the degree complements of the 
pairs of vertices. 
Theorem 4 Let A be an undirected graph, and let (vi, vj) be a 
nonminimally strongly connected pair of vertices in A. Let 
the graph A be split around (vi, vj ) into two subgraphs Ai 
and Aj and let this process of splitting around nonminimally 
strongly connected pairs of vertices be iteratively applied to 
Ai and Aj and to all their subgraphs until in the resulting 
subgraphs there exist no more nonminimally strongly 
connected pairs of vertices. The final set of these subgraphs 
then includes all the MMSC subgraphs of A. 
Theorem 5 Let A be an undirected graph, and let (vi, vj) be a 
nonminimally strongly connected pair of vertices of A 
having the highest degree complement in the magnitude 
ordering. If now the graph A is split around (vi, vj) into two 
subgraphs Ai and Aj, then in the resulting subgraphs the 
number of nonminimally strongly connected pairs of 
vertices will always be less than that when A will be split 
into subgraphs around any other nonminimally strongly 
connected pair having non-highest degree complement in 
the magnitude ordering. 
Theorem 6 In the process of successively splitting an 
undirected graph A into subgraphs around nonminimally 
strongly connected pairs of vertices, let Ai and Aj be any 
two subgraphs obtained at different stages such that Ai ⊆ Aj, 
but Ai is not derived from Aj. Then, in finding only MMSC  
 
subgraphs, the subgraph Ai may be discarded in general. 
 
4 Algorithms development 
 
The developed zero-aliasing space compression approach 
consists of a set of algorithms: The first algorithm is for 
computing set of incompatible pairs [15] of response data 

outputs of the MUT for logic AND/NAND, OR/NOR/, and 
XOR/XNOR, while the second and third algorithms are for 
finding their maximal compatibility classes (MCCs) from 
the incompatible pairs based on the two different graph 
theoretic approaches as discussed. The final algorithm 
constructs the space compaction networks using the 
information of the generated maximal compatibility classes. 
All the different algorithms are presented below. 
 
A Algorithm 1 
 
This algorithm computes all incompatible pairs of the MUT 
output lines (pairs that do not produce 100% fault coverage) 
for logic AND/NAND, OR/NOR, and XOR/XNOR. 
Step 1) Get the total number of output lines of the MUT. 
Step 2) Generate all possible combinations (vi, vj) of the 
MUT output lines, taking two at a time, and store all pairs of 
the output lines (vi, vj). 
Step 3) Select the first pair from the list of all combined 
output lines (vi, vj). 
Step 4) Merge the selected pair of output lines (vi, vj) using 
logic gates AND/NAND, OR/NOR, and XOR/XNOR, 
respectively, using only one type of logic gate at a time. 
Step 5) Add a new output line to the original MUT 
corresponding to the outputs (vi, vj), one at a time. 
Step 6) Discard the output lines (vi, vj) from the original 
MUT, and generate a new modified MUT. 
Step 7) Inject stuck-at logic faults into the newly generated 
MUT and apply test patterns. 
Step 8) If the fault coverage is less than 100%, then store the 
output pair (vi, vj) in the incompatible pairs database of 
logic AND/NAND, OR/NOR, and XOR/XNOR, 
respectively. 
Step 9) Delete the pair just considered, from the list of all 
combined output lines (vi, vj), and select the next pair. 
Step 10) Go to step 4 and continue until all pairs are 
exhausted. 
 
B Algorithm 2 
 
This algorithm is an implementation of the well-known 
graph theory technique of Bron and Kerbosch for computing 
all cliques in an undirected graph [22, 24]. We employ this 
as one graph theoretic approach for computing the MCCs of 
response data outputs of the MUT for logic families 
AND/NAND, OR/NOR, and XOR/XNOR. In the process, 
we use information of the incompatible pairs of the MUT 
output lines as generated by applying Algorithm 1 as given 
above. The algorithm is now described as follows. 
Step 1) Calculate the total number of vertices in the 
undirected graph. 
Step 2) Find the connected diagonal elements of the graph. 
Step 3) Select a candidate point. 
Step 4) Merge the selected candidate to a set called 
compsub, which is to be extended by a new point, or shrunk 
by a point on traveling along a branch of the backtracking 
tree. 
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Step 5) Generate a new set called candidates, which is the 
set of all points that will in due time serve as an extension to 
the present configuration of compsub. 
Step 6) Create another set called not, which is the set of all 
points that, at an earlier stage, already served as an 
extension of the present configuration of compsub, and are 
now explicitly excluded. 
Step 7) Remove all points not connected to the selected 
candidate, keeping the old sets intact. 
Step 8) Call the extension operator to perform on the newly 
generated sets. 
Step 9) Remove the selected candidate from the compsub, 
and add it to the old set not after returning. 
 
C Algorithm 3 
 
This algorithm also finds the MCCs from the same set of 
incompatible pairs of the MUT outputs as obtained by 
Algorithm 1 above, based on the implementation of the 
other graph theoretic approach as outlined previously [25]. 
The algorithm is provided below. 
Step 1) From the undirected graph A (compatibility graph) 
representative of the incompatible pairs, find the magnitude 
ordering of degree complements of the nonminimally 
strongly connected (NMSC) pair of outputs of the MUT in 
A. 
Step 2) Select an NMSC pair of outputs (vi, vj) in A, where 
(vi, vj) has the highest degree complement in the magnitude 
ordering. If more than one pair of outputs has the highest 
degree complement, select any one of these output pairs (vi, 
vj). Split A around (vi, vj) into two subgraphs Ai and Aj such 
that Ai contains all the outputs (vertices) of A except vj and 
Aj contains all the outputs (vertices) of A except vi. 
a) Consider the subgraph Ai; check if there exists a 
subgraph Ak from which Aj is not derived, contains Ai. If so, 
discard the subgraph Aj; if not, take Ai and go to step 1. 
b) Consider the subgraph Aj; check if there exists a 
subgraph Am from which Aj is not derived, contains Aj. If 
so, discard the subgraph Aj; if not, take Aj and go to step 1. 
Step 3) Follow steps 1 and 2 iteratively until in all the 
resulting subgraphs there does not exist any NMSC pair of 
outputs. The final set of subgraphs then includes all the 
MMSC subgraphs (MCCs) of A. 
Step 4).In the set of subgraphs obtained after step 3, check if 
any subgraph is contained in another subgraph for possible 
cancellation of non-MMSC subgraphs. The resultant set, 
after cancellation, if any, gives all the MMSC subgraphs 
(MCCs) of A. 
 
D Algorithm 4 
 
This algorithm utilizes the knowledge of MCCs as obtained 
from either Algorithm 2 or Algorithm 3 to construct zero-
aliasing space compactors for the MUT. The final algorithm 
is now given as follows. 
Step 1) Define the possible maximum number of stages in 
the space compaction trees at the MUT output. 

Step 2) Get the total number of output lines in the MUT. 
Continue the following steps until there is only a single 
output line (possibly). 
Step 3) Find the sets of all MCCs from the MUT for logic 
AND/NAND, OR/NOR, and XOR/XNOR, employing 
Algorithm 2 or Algorithm 3. 
Step 4) Select an MCCi with large (possibly largest) number 
of output lines from the set of MCCs. Select the next large 
class during subsequent iteration, if 100% fault coverage is 
not achieved in the previous iteration from the same MUT. 
Step 5) Merge selected output lines of the MCCi using 
appropriate logic gates (AND/NAND, OR/NOR, or 
XOR/XNOR). 
Step 6) Add a new output line corresponding to the selected 
merged outputs of MCCi. 
Step 7) Discard those MUT output lines that are already 
used in MCCi. 
Step 8) Search another MCCj from the remaining output 
lines. 
Step 9) Merge the selected output lines in MCCj using 
appropriate logic gates. 
Step 10) Add a new output line corresponding to the 
selected merged outputs of MCCj. 
Step 11) Discard the output lines that are already used in 
MCCj. 
Step 12) Go to step 8 as long as there are MCCs in the sets, 
and enough output lines. 
Step 13) Find all the remaining output lines that do not 
belong to any of the selected MCCs. 
Step 14) Merge all these remaining lines with XOR/XNOR 
gate. 
Step 15) Add a new output line corresponding to these 
selected merged outputs. 
Step 16) Inject stuck-at logic faults into the newly generated 
MUT (original MUT with COMPACTOR hardware). 
Step 17) Compute fault coverage (FC) by applying input 
test patterns. 
Step 18) If FC = 100%, then replace the old MUT with the 
new MUT and go to Step 2 for generating the next stage of 
the compactor. 
Step 19) If FC < 100%, then merge all the remaining output 
lines with two-input XOR/XNOR gates, two output lines at 
a time. 
Step 20) Add new output lines corresponding to the selected 
merged outputs. 
Step 21) Inject stuck-at logic faults into the newly generated 
MUT (original MUT with COMPACTOR hardware). 
Step 22) Compute FC by applying input test patterns. 
Step 23) If FC < 100%, then continue to work on the same 
MUT. Go to step 4 for selecting a new MCCk. 
Step 24) If FC = 100%, then replace the old MUT with the 
new MUT, and go to step 2 for computing the next and 
subsequent stages of the compactor. 
 
5 Experimental results 
 
Extensive simulations runs were conducted to demonstrate 
the feasibility of the proposed zero-aliasing space 
compaction scheme using ISCAS 85 combinational 
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benchmark circuits and ISCAS 89 full-scan sequential 
benchmark circuits. In our design experimentation, we used 
ATALANTA [19] (fault simulation program developed at 
the Virginia Polytechnic Institute and State University) as 
test generation tool to produce the fault-free output 
sequences needed to construct our space compactor circuits 
and to test the benchmark circuits using reduced test sets. 
We also used FSIM fault simulation program [20] that 
generates pseudorandom test sets, and COMPACTEST [21] 
program to generate the reduced test sets that detect most 
detectable single stuck-line faults for all the benchmark 
circuits. For each circuit, we determined the fault coverage 
without the compactor, fault coverage with the compactor, 
number of test vectors used to construct the compaction 
tree, simulation CPU time, number of test vectors applied, 
hardware overhead, and compaction ratio by running 
ATALANTA and FSIM programs on a SUN SPARC 5 
workstation, and COMPACTEST program on IBM AIX 
machine. 
    The complete results on ISCAS 85 combinational and 
ISCAS 89 full-scan sequential benchmark circuits are listed 
in the multitude of tables that follow (Tables 1–8). The 
circuits with the compressors were tested with the same 
fault injection and test vectors for all the simulation 
programs FSIM, COMPACTEST, and ATALANTA. The 
fault coverage is considered 100%, if the faults detected at 
the MUT outputs and COMPACTOR outputs are the same, 
implying thereby that the COMPACTOR did not introduce any 
information loss. The results on simulation using HOPE 
were not provided due to space constraint. 
    Fig. 1 gives estimates of the hardware overhead for 
ISCAS 85 combinational benchmark circuits using 
ATALANTA simulation program. For estimating the 
hardware overhead, we used the ratio of the weighted gate 
count metric, viz. average fanins multiplied by the number 
of gates or gate count of the COMPACTOR and that of the 
total circuit comprised of the MUT and COMPACTOR. Fig. 2, 
on the other hand, gives compaction ratio for ISCAS 89 
full-scan sequential benchmark circuits using ATALANTA. 
 
6 Conclusions 
 
This paper visits zero-aliasing space compaction problem of 
response data outputs of MUT with application specifically 
targeted towards digital embedded cores-based SOCs. The 
technique utilizes conventional switching theory concepts, 
viz. those of cover table, frequency ordering, and 
compatibility relation together with those of strong and 
weak compatibilities of response data outputs, in the 
selection of specific gates for merger of an arbitrary but 
optimal number of output bit streams from the MUT. The 
techniques, illustrated with details of design of space 
compactors for ISCAS 85 combinational and ISCAS 89 
full-scan sequential benchmark circuits with ATALANTA, 
FSIM, and COMPACTEST simulation programs, confirm 
the usefulness of the suggested approach, its simplicity, 
resulting low area overhead, and full fault coverage for 
single stuck-line faults, making it suitable in a VLSI design 
environment as BIST support hardware. In the sequel, it is 

evident from the experimental results that the suggested 
approach, though relies on restricted use of heuristics, still 
could be considered simple and robust enough in its design 
methodology for single stuck-line faults of the MUT. With 
advances in computational resources, evidently this heuristic 
space compaction algorithm might be improved upon for 
better efficiency in respect of time and storage. 
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Fig. 1 Area overhead of compaction networks for ISCAS 85 
combinational benchmark circuits using ATALANTA. 
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Fig. 2 Compaction ratio for ISCAS 89 full-scan sequential benchmark 

circuits using ATALANTA. 
 

Table 1 Simulation results of ISCAS 85 combinational benchmark circuits 
using ATALANTA without space compactors 

 
Table 2 Simulation results of ISCAS 85 combinational benchmark circuits 

using FSIM without space compactors 

 

Circuit 
Name 

Applied 
Test Vectors 

No. of 
Faults 

Injected 

No. of 
Outputs 

Fault 
Coverage 

(%) 
c17 7 22 2 100.00 

c432 76 520 7 100.00 

c499 66 750 32 100.00 

c880 107 942 26 100.00 

c1355 105 1566 32 100.00 

c1908 184 1870 25 100.00 

c2670 182 2630 140 100.00 

c3540 253 3291 22 100.00 

c5315 197 5291 123 100.00 

c6288 53 7710 32 100.00 

c7552 376 7419 108 100.00 

Circuit 
Name 

Applied 
Test Vectors 

No. of 
Faults 

Injected 

No. of 
Outputs 

Fault 
Coverage 

(%) 
c17 32 22 2 100.00 

c432 544 520 7 100.00 

c499 1312 750 32 100.00 

c880 5480 942 26 100.00 

c1355 2124 1566 32 100.00 

c1908 29472 1870 25 100.00 

c2670 6378144 2630 140 100.00 

c3540 38848 3291 22 100.00 

c5315 4576 5291 123 100.00 

c6288 128 7710 32 100.00 

c7552 10000000 7419 108 99.407 
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Table 3 Simulation results of ISCAS 85 combinational benchmark circuits 
using COMPACTEST without space compactors 

 

 
Table 4 Simulation results of ISCAS 85 combinational benchmark circuits 

using ATALANTA with space compactors 

 
Table 5 Simulation results of ISCAS 85 combinational benchmark circuits 

using FSIM with space compactors 

Table 6 Simulation results of ISCAS 85 combinational benchmark circuits 
using FSIM with space compactors tested with compacted test vectors 

 
Table 7 Simulation results of ISCAS 89 full-scan sequential benchmark 
circuits using ATALANTA/FSIM with space compactors 

 
_______________________ 
 
This research was supported in part by the Natural Sciences and 
Engineering Research Council of Canada under Grant A 4750. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Circuit 
Name 

Applied 
Test Vectors 

CPU 
Simulation 

Time 
(Secs) 

No. of 
Outputs 

Fault 
Coverage 

(%) 

c17 4 0.01 2 100.00 

c432 44 5.09 7 99.430 

c499 65 8.36 32 98.990 

c880 30 1.85 26 100.00 

c1355 96 2.54 32 99.480 

c1908 137 13.39 25 99.230 

c2670 68 96.78 140 95.520 

c3540 110 278.45 22 95.920 

c5315 55 35.74 123 98.890 

c6288 16 68.16 32 99.330 

c7552 85 164.23 108 98.440 

 

Circuit 
Name 

Applied 
Test Vectors 

No. of 
Faults 

Injected 

No. of 
Outputs 

Fault 
Coverage 

(%) 
c17 10 22 1 100.00 

c432 124 520 1 100.00 

c499 169 750 1 100.00 

c880 223 940 1 100.00 

c1355 220 1566 1 100.00 

c1908 313 1870 1 100.00 

c2670 496 2630 3 100.00 

c3540 270 3291 1 100.00 

c5315 692 5291 1 100.00 

c6288 65 7710 1 100.00 

Circuit 
Name 

 

Applied 
Test Vectors 

No. of 
Faults 

Injected 

No. of 
Outputs 

Fault 
Coverage 

(%) 
c17 45 22 1 100.00 

c432 2752 520 1 100.00 

c499 10929363 750 1 100.00 

c880 97055712 940 1 100.00 

c1355 100000000 1566 1 94.994 

c1908 96283712 1870 1 100.00 

c2670 100000000 2630 3 98.869 

c3540 301824 3291 1 100.00 

c5315 1316134912 5291 1 100.00 

c6288 224 7710 1 100.00 

Circuit 
Name 

Applied Test 
Vectors 

 

No. of 
Faults 

Injected 

No. of 
Outputs 

Fault 
Coverage 

(%) 
c17 7 22 1 100.00 

c432 80 520 1 100.00 

c499 100 750 1 100.00 

c880 159 940 1 100.00 

c1355 124 1566 1 100.00 

c1908 199 1870 1 100.00 

c2670 366 2630 3 100.00 

c3540 263 3291 1 100.00 

c5315 686 5291 1 100.00 

c6288 63 7710 1 100.00 

Circuit 
Name 

No. of 
Faults 

Injected 

Fault 
Coverage 
(without 

Compactor) 
(%) 

No. of 
Outputs 

(after 
Compaction) 

 

Fault 
Coverage 

(with 
Compactor) 

(%) 
s27 32 100.00 1 100.00 

s208 214 100.00 1 100.00 

s298 306 100.00 1 100.00 

s344 340 100.00 1 100.00 

s349 348 100.00 1 100.00 

s382 397 100.00 1 100.00 

s713 921 100.00 3 100.00 

s838 187 100.00 1 100.00 

s953 81 100.00 3 100.00 

s1196 1025 100.00 1 100.00 

s1238 1035 100.00 1 100.00 
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