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Abstract: Circular foundation pits often appear in civil engineering. In order to obtain the critical depth of the 

non-supported circular foundation pit, the upper-bound method in plasticity mechanics was employed. The 

assumed slip surface in analysis was the rotational logspiral surface. The kinematically admissible velocity field 

was obtained according to the associated flow rule for Coulomb material, and the optimization model of the 

critical depth was established and solved with SQP optimization algorithm. The variations of the critical depth 

with the slope angle, the ratio of depth to radius of pit and the internal friction angle of soil were studied. The 

arch effect of the circular foundation pit makes the critical depth larger than the critical height of the plane slope; 

however, when the ratio of depth to radius of pit approaches zero, the upper-bound solution of the former 

approaches that of the latter. If the ratio of depth to diameter of pit is less than 10, the arch effect may be ignored 

and the foundation pit can be analyzed as the plane slope with the method of slices. Comparison between 

upper-bound solution and the solution from limit equilibrium method showed that the former is closer to the 

true solution than the latter. 
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1   Introduction 
Limit analysis theory is an important branch of 

plastic mechanics. It was developed from the metal 

plastic theory and has already been extended to rock 

and soil mechanics now. Limit analysis was used to 

solve some engineering problems, such as slope 

stability and limit load[1-4]. It contains two kinds of 

basic methods, i.e. the upper-bound method and the 

lower-bound method. Based on upper-bound 

theorem, the upper-bound method needs to establish 

the kinematically admissible failure mechanism and 

velocity field in advance. The velocity field must 

meet motion boundary conditions and associated 

plastic flow rule. Based on lower-bound theorem, the 

lower-bound method needs to set up statically 

admissible stress field which must satisfy 

equilibrium equation, stress boundary condition and 

not disobey the failure criterion which is 

Mohr-Coulomb failure criterion for rock and soil.  
Limit analysis can give the definite bounds of 

some problems such as the slope critical height and 

the pile bearing capacity[1-3]. However, the 

solution from rigid limit equilibrium method, 

which is another analysis method used extensively 

in geomechanics, is difficult to tell that it is a 

upper-bound solution or lower-bound solution. 

For Some failure mechanisms used in limit 

equilibrium method, the corresponding 

kinematically admissible velocity fields for limit 

analysis can be obtained according to virtual work 

principle. So the limit equilibrium solutions from 

these failure mechanisms are upper-bound 

solutions, just as the Sarma method which is an 

important method solving the safety factor of 

slope. But for Some failure mechanisms used 

frequently in limit equilibrium method, the 

corresponding kinematically admissible velocity 

field can’t be set up, so the limit equilibrium 

solutions aren’t upper-bound solutions, just as the 

vertical slices method and the circular slide method 

used for the stability analysis of slope. For vertical 

slices method, inter-slice force can’t satisfy 

Mohr-Coulomb failure criterion. For Coulomb 

material obeying associated flow rule, the angle 

between velocity jump vector and the tangent of 

the slip surface should be equal to the internal 

friction angle of material, but for the circular rigid 

slide mechanism, we can’t set up any velocity field 

satisfying this.  
In addition, the limit equilibrium solutions 

can’t be used as the lower-bound solution because 

the stress field in rigid body is not known. 

The upper-bound method is applied more 

extensively than the lower-bound method because 

the establishment of statically admissible stress 

field is rather difficult. While solving the problem 

with the upper-bound method, a valid failure 

mechanism is assumed firstly, and then the 
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internal energy dissipation rate and the work done 

by external loads are calculated respectively and 

equated with each other. Thus a serial of 

upper-bound solutions corresponding to the 

specific mechanism are obtained, and finally, the 

optimum upper-bound solution can be gotten by 

employing optimization technology[5]. Donald I 

and Chen Z Y studied the stabilities of plan strain 

and three-dimension slopes using rigid blocks 

translational failure mechanism[1-2]. Murff 

obtained the lateral bearing capacity of pile with 

three-dimensional deforming mechanism[3]. 

However, limit analysis hasn’t be used to solve the 

axisymetrical problem as yet. Axisymetrical 

problems appear frequently in geotchnical 

engineering such as the stabilities of circular 

foundation pit and most in-situ tests such as CPT 

and SPT. The aim of  this paper is to solve the 

non-supported critical depth of the circular 

foundation pit to demonstrate  the application of 

upper-bound method to  axisymetrical problem. 

The circular foundation pit is often analyzed as the 

plane strain problem when the ratio of depth to 

radius of pit is large enough. When the ratio of 

depth to radius of pit is small, however, the plane 

strain solution is not accurate because the arch 

effect of soil mass largely enhances the stability of 

the pit.  

Using axisymetrical split line theory, 

Верезанцев В Г obtained the  approximate active 

earth pressure on retaining wall of circular 

foundation pit [6]. Through integrating the earth 

pressure along the depth and equating the integral 

zero, Ma S C [7] obtained  the limit equilibrium 

solution of critical depth of circular foundation pit. 
In this paper, limit analysis method will be 

employed to solve the critical depth of the circular 

foundation pit. In analysis, soil is assumed 

homogeneous and isotropic, and the failure is 

axisymetrical.  

 

 

2 Problem Formulation 
 

 

2.1 Failure Mechanism 
As a kind of slope, the common failure surface of 

circular foundation pit is logspiral surface, just as 

shown in figure 1. The rotating center of failure face 

is on the axis of foundation pit. The function of 

logspiral surface is: 

                          
φθθ tan)(

0
0−= err                             (1) 

Whereφ  is internal friction angle of soil; 0r  is polar 

radius of point b  where 0θθ = . 

The shape of foundation pit can be described 

with the ratio of depth to bottom radius RD / and 

slope angle α of foundation pit, as shown in figure 

1. Once they are known, the dimension of the 

whole failure zone can be determined by two 

independent variables: the characteristic angle 

0θ and the depth of foundation pit D .  

 

 
Fig.1 Failure mechanism of circular foundation pit 

 

In Fig.1, L  is the length of ab ; β  is defined as 

split angle that is the angle between slip surface 

and pit wall at slope toe. Let 0/ rDA =  and 

0/ rLB = . Then equations (2)-(4) can be derived 

from Fig.1: 

          0
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The function of the line ab  is: 
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The function of the line ac  is:  
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The polar angle of the point a  is: 
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According to geometrical relationship, hθ  can 

be obtained from the following equation: 
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2.2 Velocity Field 

rV , θV  and ψV  are radial, tangential and 

circumferential velocity components in spherical 
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coordinate system ),,( ψθr , respectively. 

According to the associated plastic flow rule, 

0== ψVVr  
on the logspiral failure surface. Here 

we assume further that 0== ψVVr  
in the whole 

deforming region. θV  can be determined according 

to the associated plastic flow rule. In spherical 

coordinates, tensor- strain-rates are written as: 
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Because 0== θψψ γγ ��
r , ψε� is principal strain 

rate. According to the normality of rε� , θε�  
and ψε� , 

we know rε�  and θε�  
are also principal strain rates. 

Subsequently we can know: 

 0)(
2

1
=−

∂

∂
=

r

V

r

V
r

θθ
θγ�                  

(10)  

For Coulomb material matching associated  

flow rule, Chen W F gave the following 

equation[5]:  

0=+⋅ ∑∑ ctT εε ��
                      

(11) 

Where )(tan
24

2 φπ −=T , ∑ tε� and ∑ cε� are the 

summation of principal tensional strain rates and 

the summation of principal compressive strain 

rates, respectively. Note that compressive strain 

rates are positive in this paper. 

Because 0=rε� , we know from equation (11) 

that there is a maximum strain rate maxε�   and a 

minimum strain rate minε�  in θε�  
and ψε� . In order to 

obtain velocity field, we studied the following two 

cases. 

(1) maxεεψ �� = , minεεθ �� =  

From Eq.(9) and Eq.(10), we obtain:  

0cot =
∂

∂
+

θ
θ θ

θ

V
VT

                   
  (12)  

From Eq.(10) and Eq.(12), we obtain: 

 0cot =
∂

∂
+

∂

∂
⋅

θ
θ θθ V

r

V
rT                   (13)  

The partial differential equations above can be 

solved using the variable separation method. Let 

)()( rgfV ⋅= θθ , and substitute it into Eq.(13) 

and obtain: 

1

tan

)(

)(

)(

)(
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g
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′ θ
θ
θ

               (14)  

Where 1C  is a constant. 

Solving the two ordinary differential equations 

in Eq.(14), )(rf and )(θg  can be obtained. The 

final expression of θV  
is: 

θθθ
11 sin)()(

TCC
CrgrfV

−==           (15) 

Where C  is a constant.  

Substituting Eq.(15) into Eq.(10) or Eq.(12) 

leads to 11 =C , thus Eq.(15) can be written as 

               θθ
TCrV −= sin                          (16) 

Because 0max >= εεψ �� , we can know 0>C  

after substituting Eq.(16) into Eq.(9).  At the same 

time, 
2

0 πθ << . So we can know 0>θV . This 

indicates that soil mass slides down and doesn’t 

disobey the true physical case. 

(2)  maxεεθ �� = , minεεψ �� =  

Using the same methods, we obtain:  

θθ
TCrV
1

sin
−

=                        
17
 

Because 0min <= εεψ �� , 0<C can be known 

after substituting Eq.(17) into Eq.(9).  At the same 

time, 
2

0 πθ << . so we can obtain 0<θV . This 

implies that soil mass slides up and disobeys the 

true physical condition. 

Now we know that the maximum and minimum 

principal strain rate are ψε� and θε� , respectively, 

and θV  is determined uniquely by Eq. (16). 

 

2.3 Internal Energy Dissipation Rate and 

Work by External Force 
The internal energy dissipation rates include those on 

failure surface and in plasticity deforming zone. 

According to the literature [5], the energy dissipation 

rate of unit area on failure surface is calculated with 

the following equation:  

scVE =�                               (18)  

Where c is cohesion of soil; sV is tangential 

velocity jump across the failure surface. 

Literature [5] also gave the expression of the 

internal energy dissipation rate of unit volume in 

plasticity deforming zone: 
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∑= tTcE ε�� 2                        (19)  

Once velocity field is known, strain rate field 

can be obtained according to geometric equations. 

But it’s difficult to obtain the analytic expression of  

principal strain rates and this limits the application 

of Eq.(19). Cui et al derived the general solution of 

the energy dissipation rate of unit volume in 

plasticity deforming region in terms of bulk strain 

rate [8]: 

                        VcE εφ �� cot=                          (20)  

The energy dissipation rate of unit volume in 

deforming region can be obtained from Eq.(9) and 

Eq.(20): 

         θθφ TTCcE −−= sincotcot)1(�              (21) 

For the foundation pit studied in this paper, the 

gravity of soil is the only external force. The 

gravity work rate of unit volume soil is expressed: 

                      θγ θ cosVw =�
                            

(22)  

Where γ  is soil bulk density. 

The total energy dissipation rate on failure 

surface 1D
�  is obtained by integrating Eq.(18) along 

the surface that is gotten by rotating the logspiral 

line bc about the axes of foundation pit, as shown 
in Fig.1. The total internal energy dissipation rate 

in deforming region 2D
�  and the gravity work rate 

of soil mass W�  can be obtained by integrating 
Eq.(21) and Eq.(22), respectively, in the annular 

domain that is obtained by rotating the area abc  
about the axes of foundation pit, as shown in Fig.1. 

The integrations above have no analytic solution, 

so we need to employ numerical methods to solve 

them. 

 

2.4 Mathematic Model 
According to upper-bound theorem, there is 

WDD ��� =+ 21                              (23) 

 The critical depth of foundation pit can be 

expressed as: 

)( 0θγ
f

c
Dcr =                             (24) 

 In order to obtain the minimum upper-bound 

solution of critical depth, we need to solve the 

minimum of function )( 0θf . Let 

)(min 0θfN s = , where sN  is a dimensionless 

variable, independent of c andγ  and only related 

to φ , α  and RD / . The mathematic model used 

to solve the minimum upper-bound solution of 

critical depth of foundation pit is as follows: 

                      




≥

=

0

)(min 0

B

fN s θ
                       (25) 

The constraint condition in Eq.(25) makes sure 

that point b  is on the right of point a
as shown in 
Fig.1. Base on SQP optimization algorithm, we 

used matlab software to solve the minimum 

upper-bound of critical depth of circular 

foundation pit. 

 

 

3   Results and Analysises 
When RD /  is equal to 0.1 and 1.0, respectively, the 

variations of 
sN withφ

 
andα are showed in Fig.2. 

sN  increases with the increment of φ . Moreover, 

the bigger φ
 
is, the more rapidly

 sN varies. sN  

decreases with the increment of α , furthermore, the 

smaller α  is, the more rapidly
 sN varies. 

 

 
 

Fig.3 shows variations of
sN with RD /  andφ  

when
�90=α . sN  increases with the increment of 

RD / . Moreover, when RD / is very small, the 

variation of
sN is also small. This shows that the 

arch effect of soil mass largely enhances the 

stability of the foundation pit. 

 

 

N
s 

φ / (°) 

D/R = 1 

(a)  D/R = 1 

D/R = 0.1 

N
s 

φ / (°) 

(b)  D/R = 0.1 

Fig.2  Variations of Ns with φ  and α     
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Fig.4 shows variations of characteristic 

angle 0θ with φ and α . 0θ  increases with the 

increments of
 
φ
 
and α . Once 0θ  

and sN  
are 

known, other characteristic angles aθ and hθ  and 

characteristic dimensions such as 0r  
, L and so on 

can all be obtained. Thus the location and shape of 

the slip surface can be decided. 

 

 
 

When RD /  is very small, the circular 

foundation pit can be analyzed as the plane slope. 

In limit analysis of plane slope, two kinds of failure 

mechanisms are usually used, i.e. rigid blocks 

translational and rotational mechanisms,  as shown 

in fig. 5 and fig. 6, respectively. In table 1, sN of 

vertical circular foundation pit with 

001.0/ =RD  and vertical plane slope from 

different failure mechanisms are given, 

respectively. When RD /  is very small, it can be 

found that sN  of circular foundation pit 

approximates that of plan slope from rigid blocks 

translational mechanism, and both of them are 

slightly greater than that from rigid blocks 

rotational mechanism.  

 

 

 
 

According to the results computed with the 

method proposed in this paper, we also know that 

hθθ →0 when 0/ →RD . This implies that the 

rotational logspiral surface degenerates to the 

circular truncated surface. At the same time, the 

critical slip angle crβ corresponding to crD  
is the 

same as the critical value of β   shown in Fig.5 and 

both are equal to )2/4/( φπ − . But this doesn’t 

imply that the plasticity deforming region 

degenerates to rigid region because internal energy 

dissipation rate expressed by Eq. (9) isn’t equal to 

zero. 

 

 
 

Table 1  Ns obtained from some failure mechanisms 
Ns 

φ 
Plane slope with 

rigid blocks 

translational 

failure mechanism 

Plane slope with 

rigid blocks 

rotational failure 

mechanism 

Circular 

foundation pit of 

D/R=0.001 with 
axisymetrical 

failure mechanism  

0° 4.000 3.8300 4.0021 

10° 4.7666 4.5925 4.7685 

20° 5.7115 5.5116 5.7229 

30° 6.9261 6.6935 6.9289 

40° 8.5741 8.3330 8.5785 

 
The stability of plane slope often be analyzed 

with vertical slices method, e.g. Janbu method. For 

plan slope, when
�20=φ , sN  from Janbu method 

α φ 

Vθ 

Rigid zone 

 

Logspiral surface 

Fig.6  Rigid blocks rotational failure mechanism 

Rigid zone 

 

φ 
V 

Rigid zone 

 

Rigid zone 

Failure surface 

Fig.5 Rigid blocks translational failure mechanism 

β 

θ  
0
/(
°)
 

φ /(°) 
 

D/R = 1 

Fig.4  Variations of  θ 0 with φ and α 

N
s 

Fig.3  Variations of Ns with D/R and φ  
 

α = 90° 

D/R 
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is equal to 6.01. It is very similar to the upper limit 

solution of circular foundation pit whose RD /  is 

0.2. So the arch effect of the foundation pit may be 

ignored and it can be regarded as plan slope and 

analyzed with the slices method when the ratio of 

depth to diameter of pit is less than 10. 

Comparison was made between upper-bound 

solution and limit equilibrium solution obtained by 

Ma S C [7], as shown in Fig 7. It can be seen that 

upper-bound solution is slightly greater than limit 

equilibrium solution when 0=φ , however, in 

other cases, the former is always less than the 

latter. This implies that the upper-bound solution is 

better than limit equilibrium solution and closer to 

the true solution than the latter generally. 

 
 

 

4   Conclusion 
Assuming that soil mass is homogeneous and 

isotropic and the failure model of circular foundation 

pit is axisymetrical, kinematically admissible failure 

mechanism and velocity field were established 

according to associated plastic flow rule. Using them, 

the stability of the circular foundation pit was 

analyzed and the limit upper-bound solution of 

critical height was obtained. The following are some 

important conclusions: 

(1) Critical depth increases with the decrement of 

slope angle of foundation pit and the increment 

of the ratio of depth to radius and internal 

friction angle of soil.  

(2) The arch effect of circular foundation pit makes 

its critical depth greater than the critical height 

of plane slope. However, the arch effect is 

unconspicuous when the ratio of depth to 

diameter of pit is less than 10. 

(3) When the ratio of depth to radius is very small, 

the upper-bound solution of circular foundation 

pit is very close to the one of plane slope 

obtained from rigid blocks translational failure 

mechanism. Moreover, on the axisymetrical 

surface, the rotational logspiral failure line 

degenerates to straight line, and the critical slip 

angle is the same as plane slope from rigid 

blocks translational mechanism, however, the 

plasticity deforming zone isn’t rigid yet.  

(4) By comparison between upper-bound solution 

and limit equilibrium solution, it was found 

that the former is closer to the true solution 

than the latter. 
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