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Abstract: - This paper describes a numerical procedure to solve the homogeneous boundary problem for a stationary 
transport equation. The stability and convergence of the proposed finite differences scheme is proved. The error value 
that corresponds to the numerical solution is also obtained using the Lax theorem. 
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1   Introduction 
Recently, computer science has led to the development 
of numerical algorithms for solving the mathematical 
physics problems. This has raised fundamental 
questions about the convergence and the stability of 
these algorithms. An instable scheme will be sensitive 
to the rounded errors that appear in the calculating 
process and thus, the numerical solution will differ 
from the exact solution.  
 There is a large literature on the numerical 
solution of a neutrons transport equation, [1], [5], [6], 
[8], [11], [13]. The recent studies use the methods of 
Ritz and Galerkin, the method of least squares, the 
method of finite elements and Nyström method.  
 The algorithm proposed by us in the work, 
replaces the solution of an integral-differential 
equation with homogeneous boundary conditions by 
the solution of a diffusion equation with non-
homogeneous boundary conditions. For this new 
problem we study the stability and the convergence 
rate of a differences scheme based on the integral 
identity method. 
  
2   Problem formulation 
 
In the stationary case, we consider a transport equation 
of the form 
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The boundary conditions are 
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Here ϕ  is the density of neutrons, which migrate in a 
direction defined by the angle γ against Ox axis and we 
denote μ = cosγ.  Let us consider the radioactive 
source  f  as a even function with respect  μ.  
Using the notations: 
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and substituting μ′′ = - μ′, we get 
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Then the conditions (2) become 
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and the equation (1) can be rewritten in the form 
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Adding and subtracting the equations (5) and 
introducing the notations: 
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we obtain the following system 
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The boundary conditions become 
 
                    u + v = 0    for   x = 0, 
                               (8) 
                    u - v = 0    for   x = H. 
 
Now, we find v from the second equation of (7) and 
using the first equation, we rewrite the problem (7)-(8) 
in the following form 
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In order to get a solution of the problem (9)-(10), we 
consider on x axis two points systems: 
- a principal system: {xk } = 1Δ′ , k∈{0, 1,….,N },   
       with x0 = 0, xN = H and  h = xk+1 – xk; 

-      a secondary system,   { } ,12/1 Δ ′′=+kx
       , which verifies the { 1,....,2,1,0 −∈ Nk }
        inequalities: 2/12/1 +− << kkk xxx , where 
 

                    2/)( 12/1 ++ += kkk xxx                  
and 
       Hxxxx NN =<<<<= − 2/12/10 ....0 . 
 
Besides, let { } { Lll ,...,1,0,2 ∈ }=Δ μ be a partition of 
the interval 2D ′′  = [0,1] and ,1 ll μμτ −= +  

{ }1,...,1,0 −∈ Ll . 
Further on, we consider H =1. For every value μl ∈Δ2, 
the problem (9)-(10) becomes: 
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Now (11)-(12) is a boundary problem for a one-
dimensional diffusion equation (11). Integrating (11) 
with respect to x on the intervals: (xk -1/2, xk +1/2), we 
obtain 
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We find Jk  - 1/2  integrating (11) on the interval  
(xk -1/2, x), where x∈(xk -1, xk). We get 
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Then, dividing (15) by  and integrating on (x2

lμ k – 1, xk ) 
we have 
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where uk = u(xk, μl). Finally, we get    
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In a similar manner, we obtain the exact relation for   
Jk  + 1/2 replacing k by k+1.  Consequently, the equality 
(14) becomes: 
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where  k∈{1,2,…,N-1}.    (18) 
 
The formula (16) is named the fundamental identity 
for the finite differences equations. 
 
Let us now define the operator A on the set U of the 
solutions of equation (11) that satisfy the boundary 
conditions (12) 
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where  
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Writing now (18) for k = 1, 2,…, n –1, we get the 
system 
   Au = F   (20) 
 
To study the approximations of the equation (20), we 
consider the space Φ  of the reticulated functions 
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that are defined in the points x0, x1,…,xn.  
In order to can use the functions F and u, which can to 
have the discontinuous points in any points xi that 
belong to the principal system, we define the value of 
the function in the node xk  of the form 
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if the step is constant. In the following, we write the 
approximate form of the equation (20) 
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Let us now consider in Φ  the scalar product of the 
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3 Stability and convergence 
 
Let us now show that the difference scheme is stably. 
We suppose that F∈Q2([0,1]) (the function and its 
derivates until two order are continuous everywhere in 
[0,1] except a finite number of first-order 
discontinuous that belong to the set {x1,…,xn}) and 
approximate solution of equation (23), uh∈Φ  is 
continuous on [0, 1].  
Using the finite differences method, the boundary 
conditions (12) become 
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By using (24), (26) and (27), we get 
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It should observe that this result doesn’t lead to the 
relation between uh and g, which defines the stability 
of our difference scheme: 
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where C1 is an independent constant of h and g. 
 
In view of the equation (11) we have 
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Then, using the Cauchy – Schwarz inequality  
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for every μl fixed into Δ2. Finally, from the definition 
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and the stability of differences scheme is proved. 
 
Definition 
 
The problem  

                     Ahuh = Fh     (22)  
 
is an approximations of the n- order with respect to the 
solution u of the equation (20), if there are the 
constants h1 and M1 such that for h < h1 we have 
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Since the functions F and u have its derivates 
continuous until two order everywhere in [0,1], except 
a finite number of first-order discontinuous that belong 
to the set {x1,…,xn} and using the Taylor formula in 
the vicinity of the nodes xk, we get  
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(25), the square of the norm verifies the inequality 
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Thus it has been show that the differences scheme (22) 
approximates the initial problem (20) with the order 
3/2 with respect to the solution u. 
With the help of the following theorem,[5], we shall 
estimate the speed of the convergence of the 
approximate solution uh to the exact solution u.  
 
Theorem (Lax). If 
1. the differences scheme (22) approximates the 

initial problem (20) with the order n with respect 
to the solution u; 

2. Ah is a linear operator; 
3. the difference scheme is stably in accordance with 
      (29), then the solution of the approximate problem 
is convergent to the exact solution and the evaluation 
of the convergent speed is defined by the following 
inequality 
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Using the above theorem to our problem, the value of 
the error is  
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4 Conclusion 
 
In this paper a numerical procedure for the solution the 
homogeneous boundary problem for a stationary 
transport equation has been presented. 
The finite differences scheme based on the integral 
identity method has convergence and stability.  
Error analysis is presented using the Lax theorem. 
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