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Abstract: - This paper describes a numerical procedure to solve the homogeneous boundary problem for a stationary
transport equation. The stability and convergence of the proposed finite differences scheme is proved. The error value
that corresponds to the numerical solution is also obtained using the Lax theorem.
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1 Introduction

Recently, computer science has led to the development
of numerical algorithms for solving the mathematical
physics problems. This has raised fundamental
questions about the convergence and the stability of
these algorithms. An instable scheme will be sensitive
to the rounded errors that appear in the calculating
process and thus, the numerical solution will differ
from the exact solution.

There is a large literature on the numerical
solution of a neutrons transport equation, [1], [5], [6],
[8], [11], [13]. The recent studies use the methods of
Ritz and Galerkin, the method of least squares, the
method of finite elements and Nystrém method.

The algorithm proposed by us in the work,
replaces the solution of an integral-differential
equation with homogeneous boundary conditions by
the solution of a diffusion equation with non-
homogeneous boundary conditions. For this new
problem we study the stability and the convergence
rate of a differences scheme based on the integral
identity method.

2 Problem formulation

In the stationary case, we consider a transport equation
of the form

Op(x, u)
# Ox
where @

1
gl ) = — | ol )du’ + 1 (x40
a

a>0, V(x,u) e D, x D, =[0, H] x[-1,1],
D, = D, UD; =[-1,01U[01].

The boundary conditions are

o0,u)=0if ©u>0 )
oH,u)=0 if £u<0 @)

Here ¢ is the density of neutrons, which migrate in a
direction defined by the angle yagainst Ox axis and we
denote 2 = cosy. Let us consider the radioactive
source f as aeven function with respect s

Using the notations:

o* =, w)if £>0;, ¢~ =o(x, ) if u<0 (3)

and substituting x”" = - u, we get

0 1 1
[o(x, w)du' = [ p(x—u")du" = [ p=du".
-1 0 0

Then the conditions (2) become
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90, u)=0, ¢ (H, 1) =0 (4)

and the equation (1) can be rewritten in the form

oo™ 11 ,
1wl ot == (p* o)y + [
ox ay
5)
op~ 11 .
—ﬂLJr(P_:—J((er(P_)d/I + f
Ox ay

Adding and subtracting the equations (5) and
introducing the notations:

u =%(¢+ +07) v=%(¢* ~¢)

1 1 (6)
g=—(f+ +f‘), r=—( * —f—):o
2 2
we obtain the following system
1
,uﬁ+u:£.[ud,u+g (a)
ox ap )
,u% +v=0 (b)
0x
The boundary conditions become
u+v=0 for x=0,
(8)

u-v=0 for x=H.

Now, we find v from the second equation of (7) and
using the first equation, we rewrite the problem (7)-(8)
in the following form

252u 2
-y —+u=

1
= — | udu + 9
P ag u+g )

ou
=|lu+pu— =0 (10
x=0 (u H 8x]|x =H (10)

In order to get a solution of the problem (9)-(10), we

consider on x axis two points systems:

- aprincipal system: {x;} = A;, k€{0, 1,.....N },
withxg =0, xy = Hand A = xj41 — Xz,

- asecondary system, {x; 1,5} = A],
k € {0,1,2,...., N — 1}, which verifies the
inequalities: x;_;;» < x; < x;,1/,, Where

Xee1/2 = (g + Xp41) 12
and
OZXO <x1/2 <""<fo1/2 <XN =H.

Besides, let A, = {1, },/ € {01,..., L }be a partition of
the interval D; =[0,1]1and 7 = y; .1 — 1y,
le{0l,.. L-1}.

Further on, we consider H =1. For every value 4 €A,,
the problem (9)-(10) becomes:

_ lu2 dzu(x, /ul)

P v ) = Flro) (1)

where
1
Fw ) = SG) + gx ). S() = = . )
0

and

(u(x, Hp) = 1y WJX _o" 0
(u(x, M) + 1y WJX . 0

(12)

Now (11)-(12) is a boundary problem for a one-
dimensional diffusion equation (11). Integrating (11)
with respect to x on the intervals: (x; .12, Xt +12), We
obtain
Xk+1/2
~Jiay2 * g2+ = F)dx =0 (14)
Xk-1/2
where

du(x, u;)
Jisrr2 = JOgs1s2), SO py) = pf TI

We find J; .1, integrating (11) on the interval
(%172, x), where x e (x;_1, x;). We get

12 du(x, y;)

=J,_ + - F)d 15
Py f-1/2 [(u—F)dx (15)

Xe-112

Then, dividing (15) by y,z and integrating on (x;_1, x;)
we have

Fody % ode X
up —tyy =Jyapp [ —5+ | — [w-F)dé
va B e Bioxia
(16)
where u; = u(x;, 14). Finally, we get
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2 X,
u 1w x
Ji 112 :7[[”/(—”/(1——2 [ dx [(u-F)ds

[ Xp—1  Xp-1/2
(7)
In a similar manner, we obtain the exact relation for

Ji + 12 replacing £ by k+1. Consequently, the equality
(14) becomes:

— — Xk+1/2
,ulz[”k h“k+1 + Mk huk—lJ v (- F)de =
Xk-112

1 Yk+1 X 1 % 54
= [ dx j(u—F)déJr; [dx [(u—-F)dé

Xk Xk+1/2 X1 Yk-1/2

where ke{12,....N-1}. (18)

The formula (16) is named the fundamental identity
for the finite differences equations.

Let us now define the operator 4 on the set U of the
solutions of equation (11) that satisfy the boundary
conditions (12)

(Au), = - ui [T/lk+1 —u U _Mk—lJ+Xk+."1;/l26ix
Axk h h Xk-1/2
X +1 x X X
LF. jdx judg_l- jdx 'fudf}
Axy X Xk+1/2 h Yk-1 Xg-1/2
(19)
1 Xk+112
(F) =— _[Fdx+
k Xg-1/2
Xk +1 x X X
+Ll [ dx jpdg_l [dx [ Fd¢
Ay | h [ h i«
k k+1/2 k-1 Yk-1/2
where

Axk = Xk+1/2 — Xp-1/2 = h, ke {1,2,...,}1 —1}

Writing now (18) for £k = 1, 2,..., n -1, we get the
system
Au=F (20)

To study the approximations of the equation (20), we
consider the space @ of the reticulated functions

ul = (ug,uf,ug,...,uf_l,u,é’

that are defined in the points xg, x1,...,x,.

In order to can use the functions F and », which can to
have the discontinuous points in any points x; that
belong to the principal system, we define the value of
the function in the node x; of the form

1 Xk+1/2 1 Xk+1/2
(F"y =— [Fdx== [Fdx (21
k xp_1/2 h Xk-1/2

if the step is constant. In the following, we write the
approximate form of the equation (20)

At =F (22)
Where

2
H u u u Up_
(Ahuh)k __ ( k+1 k _ %k k 1}_’_

A\ h
L1 h__ﬂlz Uy —Up  Up —Up g Ugh
Uun =
Axk Axk h h /112
k=1,2,...n-1and Ax; = h. 23)

Let us now consider in @ the scalar product of the
form

n-1
(a,b) = > Axia;by (24)
k=1
and the norm
2 n-1
Jaff =S Axa? (25)
k=1

3 Stability and convergence

Let us now show that the difference scheme is stably.
We suppose that FeQ*([0,1]) (the function and its
derivates until two order are continuous everywhere in
[0,1] except a finite number of first-order
discontinuous that belong to the set {xi,....x,}) and
approximate solution of equation (23), u'e® s
continuous on [0, 1].

Using the finite differences method, the boundary
conditions (12) become

Uy —Up Hi
Uy = = Uy = u 26
0= M 0= (26)
u, —u,_ 7
U, = -4 - hn 1:>un:h+llu Uy 1 (27)
i

By using (24), (26) and (27), we get

(uh,Fh) — (uh,Ahuh) —
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nYoup g —up  up —u n-l
_ 2 k+1 k k k-1 2 _
—_#12( P - P up + Qup-h=
k=1 k=1

ZM n nilulf h+ (28)
=2 k-1

+ u? ul(ulh_ Up) +u? ”nl(unhl — ) _
nLuy, —uy_1)? ul
2 Kk Uk !
Pttt ) 2 o

It should observe that this result doesn’t lead to the
relation between " and g, which defines the stability
of our difference scheme:

o< e’ e

where C; is an independent constant of 2 and g.

In view of the equation (11) we have
2 1
F(x, 1) = S(x) + g(x, 4y), S(x) = ;Iu(x, p)dp
0

Let us assume that solution of the problem
(11)-(22) is of the form

u(x, p) = u"¢(x), r=1 (30)

In this case, [10], the following inequalities are found

n-=1
(", F") = kz1hu£Fkh =

n-1 b 1xk+l/2
= Sl J gl s + (31)
k=1 Xp-1/2
n-1 N Y1721 Y
+ D hu)l — Idxjuk(x, wdu =
k=1 Xp-1/20
b 5 n-1 5 2 Xk+1/2
k=1 ah Xk-1/2 0
e Zh 1 XkT/z (d
= + —_— Mo (x)dx =
k=1 Can (r+Duf Xp— 1/21 ¢
= (uh oh S
(" e+ (r+1) g

Then, using the Cauchy — Schwarz inequality

(@67 <[a"], - o],
we get
(74 < [ut] "] +

(r + 1)a,u

Taking (28) into account, it can be show the following
inequalities

HuhHQS ‘th”db (r_}_]_)a/ur

2 ) = o,

s U2

Hence
e T

TR P

a 2

, We obtain

u"],, < culs], (34)

for every g fixed into A,. Finally, from the definition

Cl = max Cl
1</<L-1

we get
[«"], = cilsl, (35)

and the stability of differences scheme is proved.
Definition

The problem
A = F (22)

IS an approximations of the n- order with respect to the
solution u of the equation (20), if there are the
constants /; and M; such that for 4 < /; we have

|4t @), - F*| < Mipr (36)

where (u); is the vector with the n-1 dimension from @
with the components u(x,). Using the equations (20)
and (22) we get

HAh[(“)h _uh]‘zp - HAh(u)h —EE _Fthp <
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< “Ah(u)h _F“q& +HF _Fthb =

h h h
<|e’], +1a"1, + e,

where
P 1 Xk+1/2
&) = Z Iu(x, py)ax —u(xy, py)h
Xg-1/2

1 k1 x
("), =7 [dx [ult, py)dt +

Yo Xk+1/2

1 % <
+—— jdx fu(t,u[)dt
Xp—1 Xk-1/2
1 Xk +1 X
T2

de fF(t, Mp)dt +
Xk Xk41/2

(eh)k =

1%
+ = [dx [F(t, p;)dt

Xp-1 Xk-1/2

Since the functions F and u have its derivates
continuous until two order everywhere in [0,1], except
a finite number of first-order discontinuous that belong
to the set {xi,...,x,} and using the Taylor formula in
the vicinity of the nodes x;, we get

|(EM)e| < Nay | 0" < Nohi |(07)] < Nsh
Let us now define
(@")5 = max( ("), || ")l @")|) = N

where N = max(Ny, N,, N3). By using the definition
(25), the square of the norm verifies the inequality

o} =S @2 < N23
k=1
Consequently,
Ha)hH@ < Mh3/2 (37)

Thus it has been show that the differences scheme (22)
approximates the initial problem (20) with the order
3/2 with respect to the solution w.

With the help of the following theorem,[5], we shall
estimate the speed of the convergence of the
approximate solution " to the exact solution u.

Theorem (Lax). If

1. the differences scheme (22) approximates the
initial problem (20) with the order » with respect
to the solution u;

2. A"isalinear operator;
3. the difference scheme is stably in accordance with
(29), then the solution of the approximate problem
is convergent to the exact solution and the evaluation
of the convergent speed is defined by the following
inequality
|y, — | < MCypn (38)

Using the above theorem to our problem, the value of
the error is

|y —ut|, <3| C<3CMA2 =K 12

for 4 fixed. Let us now consider K = max K, and
0<I<L

finally, the estimation of the error is the following

@)y =t | < K132 (39)

4 Conclusion

In this paper a numerical procedure for the solution the
homogeneous boundary problem for a stationary
transport equation has been presented.

The finite differences scheme based on the integral
identity method has convergence and stability.
Error analysis is presented using the Lax theorem.
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