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Hölder spaces

Iurie Caraus
Moldova State University
Faculty of Mathematics

and Informatics
Mateevici 60 str.,
Chisinau, Moldova
caraush@usm.md

Nikos E. Mastorakis
WSEAS

A. I. Theologou 17-23
15773, Zographou, Athens,

Greece
mastor@wseas.org

Abstract: In this paper we present the test examples for the for approximative solution
of Singular Integro- Differential Equations with kernels of Cauchy type by mechanical
quadrature method. The equations are defined on the ellipse. We formulate the theorem
about theoretical background of mechanical quadrature method in classical Hölder spaces.
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1 Introduction

Singular Integro- Differential Equations
with Cauchy kernels (SIDE) model many
problems in elasticity theory, aerodynam-
ics, mechanics, thermoelasticity, queueing
system analysis, etc. [1]-[11]

The general theory of SIDE has been
widely investigated in last decades [12]-
[18]. It is well known that the exact solu-
tion for SIDE can be found in rare spacial
cases. Even in these cases, evaluating the
solution numerically can be very compli-
cated and laborious.

We note that theoretical background
of collocation methods and mechanical
quadrature methods for approximate solu-
tion of SIDE in Generalized Hölder spaces
and classical Hölder spaces has been ob-
tained in [20],[22],[23]. The equations
have been defined on the arbitrary smooth
closed contours.

In this article we present the test ex-
amples for numerical solution of SIDE.
The equation are defined on the ellipse.
To construct the Riemann function we use
the approximative methods.

2 The Numerical Schemes
of Mechanical Quadra-
ture Methods

In this item we present the numerical
schemes of Mechanical Quadrature Meth-
ods. We formulate the convergence the-
orem. The results from this section were
obtained in [20], [22], [23].

Let Γ be an arbitrary smooth closed
contour bounding a simple connected do-
main D+ in the complex plain, let z = 0 ∈
D+, and let D− = C \{D+⋃Γ}, where C
is a full complex plane.

Let z = ψ(w) be the Riemann func-
tion which maps conformably the exterior
of unit circle Γ0 (= |w| = 1) onto D− so
that,

ψ(∞) =∞, ψ′(∞) = 1. (1)

We denote by Λ the class of contours
which satisfies the conditions (1).

We denote Hβ(Γ) the space of func-
tions on Γ satisfying the Hölder condition
with the exponent1 β, 0 < β ≤ 1 :

Hβ(Γ) = {g(t) : |g(t
′
)− g(t

′′
)| ≤

1By d1, d2, . . . , we denote the constants.
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≤ d1|t′ − t′′ |β; t
′
, t
′′ ∈ Γ}.

The norm on Hβ(Γ) is defined by

||ϕ||β = max
t∈Γ
|ϕ(t)|+

+ sup
t1 6=t2

ϕ(t1)− ϕ(t2)
|t1 − t2|β

= ||ϕ||C +H(ϕ;β), t1, t2 ∈ Γ, . (2)

By H
(q)
β (Γ) we denote the space of

q times differentiable functions g(t) such
that g(q) ∈ Hβ(Γ); the norm in H

(q)
β (Γ) is

given by the formula

||g||β,q =
q∑

k=0

||g(k)||C +H(g(q);β).

In the complex space Hβ(Γ) we will
consider the singular integro-differential
equations (SIDE)

(Mx ≡)
q∑

r=0

[Ãr(t)x(r)(t)+

+B̃r(t)
1
πi

∫

Γ

x(r)(τ)
τ − t dτ+

+
1

2πi

∫

Γ
hr(t, τ) · x(r)(τ)dτ ] =

= f(t), t ∈ Γ, (3)

where Ãr(t), B̃r(t) and hr(t, τ) (r = 0, q)
and f(t) are given functions; x(0)(t) =
x(t) is the unknown function; x(r)(t) =
drx(t)
dtr

(r = 1, q); q is a natural number.
We search for the solution of equation

(3) in the class of functions, satisfying the
condition

1
2πi

∫

Γ

x(τ)τ−k−1dτ = 0, k = 0, q − 1.

(4)

We introduce the terminology ”the
problem (3)-(4)” for the SIDE (3) together
with the conditions (4).

We search for the approximate solu-
tion of the problem (3)-(4) in the form

xn(t) =
n∑

k=0

ξ
(n)
k tk+q +

−1∑

k=−n
ξ

(n)
k tk, t ∈ Γ,

(5)

where ξ
(n)
k = ξk (k = −n, n) are un-

knowns; we note that the function xn(t),
constructed by formula (5) satisfies the
conditions (4).

According to the collocation method,
we determine the unknowns ξk (k =
(−n, n)) from the condition of inversion
into zero of the expression

Mxn(tj)− f(tj) = 0,

in 2n+1 different points tj ∈ Γ (j = 0, 2n).
As a result we will obtain the system

of linear algebraic equations (SLAE):

q∑

r=0

{Ar(tj)
n∑

k=0

(k + q)!
(k + q − r)! t

k+q−rξk+

+Br(tj)
n∑

k=1

(−1)r
(k + r − 1)!

(k − 1)!
×

×t−k−rj ξ−k +
1

2πi
·
n∑

k=0

(k + q)!
(k + q − r)!×

×
∫

Γ

Kr(tj , τ)τk+q−rdτ · ξk+

+
n∑

k=1

(−1)r
(k + r − 1)!

(k − 1)!
· 1

2πi
×

×
∫

Γ

Kr(tj , τ)τ−k−rdτ · ξ−k} =

= f(tj), j = 0, 2n, (6)

where Ar(t) = Ãr(t) + B̃r(t) Br(t) =
Ãr(t)− B̃r(t), r = 0, q.

If the problem (3)-(4) is solved by the
mechanical quadrature method we will ap-
ply as a quadrature formula the following
one:

1
2πi

∫

Γ

g(τ)τ l+kdτ ∼=

1
2πi

∫

Γ

Un(τ l+1 · g(τ))τk−1dτ,

where k = 0, n for l = 0, 1, 2, . . . and k =
−1,−n for l = −1,−2, . . . ; the operator
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of interpolation Un is determined by the
formula

(Ung)(t) =
2n∑
s=0

g(ts) · ls(t),

lj(t) =
2n∏

k=0,k 6=j
t− tk
tj − tk

(
tj
t

)n
≡

n∑

k=−n
Λ(j)
k tk,

t ∈ Γ, j = 0, 2n.

Thus, for the determination of the un-
knowns ξk (k = −n, n) by the mechanical
quadrature method we get the following
SLAE:

q∑

r=0

{Ar(tj)
n∑

k=0

(k + q)!
(k + q − r)! t

k+q−r
j ξk+

+Br(tj)
n∑

k=1

(−1)r
(k + r − 1)!

(k − 1)!
t−k−rj · ξk+

+
n∑

k=0

(k + q)!
(k + q − r)!

2n∑

s=0

Kr(tj , ts)t1+k−r
s Λ(s)

−kξk

n∑

k=1

(−1)r
(k + r − 1)!

(k − 1)!
×

×
2n∑

s=0

Kr(tj , ts)t−1−r
s Λ(s)

k ξ−k} =

= f(tj), j = 0, 2n. (7)

To find the numbers Λ(s)
k we will use Vi-

ete’s theorem.
Let Ḣ

(q)
β (Γ) be subspace of H(q)

β (Γ)

and elements from Ḣ
(q)
β (Γ) satisfy the con-

ditions (4). The norm is defined as in
H

(q)
β (Γ).

Theorem 1. Let Γ ∈ Λ and the
following conditions be satisfied:

1. the functions Ak(t), Bk(t), hk(t, τ),
(for both variables) (k = 0, q) and
f(t) belong to the space H(r)

α (Γ), 0 <
α < 1, r = 0, 1, . . . , 0 < β < α < 1;

2. Aq(t)Bq(t) 6= 0, t ∈ Γ ;

3. the index of function tqB−1
q (t)Aq(t) is

equal zero;

4. the operator M : Ḣ(q)
β (Γ)→ Hβ(Γ) is

linearly invertible;

5. the points tj (j = 0, 2n) form a sys-
tem of Fejér knots on Γ :

tj = ψ

[
exp

(
2πi

2n+ 1
(j − n)

)]
,

j = 0, 2n, i2 = −1,

Then for values n ≥ n1, enough large
SLAE of mechanical quadrature method
(7) has the unique solution ξk (k = −n, n)
and the approximate solutions

xn(t) =
n∑

k=0

ξkt
k+q +

−1∑

k=−n
ξkt

k, t ∈ Γ

(8)
converge to the to the exact solution of
problem (3)-(4). The following estimate
holds:

||x−xn||β,q ≤ d2 + d3 lnn+ d4 ln2 n

nr+α−β
H(x(r);α).

3 Verification of conditions
from theorem 1

We can use the analytical methods to ver-
ify that the coefficients from (3) belong to
H

(q)
α (Γ). To calculate the index function

we use the numerical algorithm from [13].
To construct the Riemann function for

Fejér points we use the numerical algo-
rithm from [21].

We present two examples for SIDE
The right parts are calculated automatic.
The contour Γ is an ellipse R cos(ϕ) +
ir sin(ϕ). The approximative solutions we
calculate by formula (5). The programs
were written in Pascal.

Example 1. Ãr(t) =
t2

2

B̃r(t) =
2− t2

2
, Kr(t, τ) =

t+ r

τ
,

r = 0, 2, exact solution x(t) =
1
t
.
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exact sol. approx. sol. Re(∆) Im(∆)
-0.68+0.06i −0.68 + 0.06i 2.10E-09 3.60E-09
-0.82+0.24i −0.82 + 0.24i 3.91E-09 1.29E-09
-1.06+0.93i −1.06 + 0.93i 2.71E-09 2.40E-09
0.65+1.78i 0.65 + 1.78i 5.74E-10 5.74E-09
0.95+0.46i 0.95 + 0.46i 3.88E-09 4.41E-09
0.73+0.13i 0.73 + 0.13i 1.53E-09 1.94E-09
0.67-0.00i 0.67− 0.00i 4.00E-11 7.75E-10
0.73-0.13i 0.73− 0.13i 1.68E-09 1.79E-09
0.95-0.46i 0.95− 0.46i 4.09E-09 3.85E-09
0.65-1.78i 0.65− 1.78i 5.68E-10 4.82E-09
-1.06-0.93i −1.06− 0.93i 2.65E-09 2.32E-09
-0.82-0.24i −0.82− 0.24i 3.67E-09 1.19E-09

Example 2. Ãr(t) =
t3 + t

2

B̃r(t) =
t− t3 − 2

2
, Kr(t, τ) =

t+ r

τ
,

r = 0, 2, exact solution x(t) =
1
t2
.

exact sol. approx. sol. Re(∆) Im(∆)
0.46-0.08i 0.46− 0.08i 1.92E-09 3.02E-10
0.61-0.40i 0.61− 0.40i 1.88E-10 1.88E-09
0.26-1.98i 0.26− 1.98i 1.26E-09 2.61E-10

-2.74+2.30i -2.74+2.30i 8.60E-10 1.59E-08
0.69+0.87i 0.69+0.87i 3.07E-10 8.17E-10
0.52+0.19i 0.52+0.19i 4.96E-10 3.13E-10
0.44-0.00i 0.44-0.00i 6.69E-10 1.27E-10
0.52-0.19i 0.52-0.19i 2.24E-10 1.00E-11
0.69-0.87i 0.69-0.87i 1.62E-09 9.60E-10
-2.74-2.30i -2.74-2.30i 9.20E-10 2.19E-08
0.26+1.98i 0.26+1.98i 1.27E-09 3.09E-11
0.61+0.40i 0.61+0.40i 8.14E-10 2.47E-09

4 Conclusion

The test examples were elaborated. We
constricted Fejér points numerically.
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