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Abstract: - Models of real systems are of fundamental importance in virtually all disciplines. Models make 
possible to predict or simulate a system’s behavior. Since the quality of the model typically determines an upper 
bound on the quality of the final problem solution, modeling is often the bottleneck in the development of the 
whole system. As a consequence, a strong demand for advanced modeling and identification schemes arises. In 
this paper it is shown, via the development of a system for the analysis of the seismic response of rockfill dams, 
that neurogenetic techniques are a better option than analytically-based procedures in this kind of studies. To 
buttress this assertion, El Infiernillo dam, which has an ample history of being shaken by a great variety of 
seismic events, is used to this end. 
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1   Introduction 
Many combinations and nuances of theoretical 
modeling from first principles, i.e., physical laws, and 
empirical modeling based on measurement data can 
be pursued. [1] and [2] developed an analytically-
based system to study the seismic behavior of El 
Infiernillo dam. They resorted to a theoretical 
approach that drew support from measured responses 
(data) of this dam to several earthquakes. Besides the 
knowledge from first principles and the information 
oriented in the measurement data, qualitative 
knowledge formulated in rules were also utilized in 
the development of the model. The determination of 
the model structure relied strongly on prior 
knowledge and the model parameters were mainly 
determined from measurement data. This model has 
shown to be fairly good at extrapolating and 
providing good understanding of the physical 
phenomenon. From the engineering view point is 
reliable and scalable. However, it is time consuming 
and requires a degree of expertise on dam 
engineering to be applied in design. 
 
During the past years the authors have been using 
connectionism for developing alternate procedures to 
solve geotechnical (i.e. [3], [4]) and earthquake 
geotechnical engineering problems [5], [6]. 
Considering that these and further experiences have 
proven that knowledge-based neural techniques 
constitute an alternative with a number of advantages 
over analytical methods, it was just natural to step up 
the complexity of the problems dealt with. In this 

paper, a neurogenetic model is developed to extract 
information about the seismic behavior of El 
Infiernillo dam from its responses recorded during 
several earthquakes. Herein, this procedure is 
compared both with analytical model results and 
“unknown” measurement data. 
 
 
2   System Identification 
Science deals with the inference of models from the 
comprehension of recorded data properties. System 
identification handles the problem of making 
analytical models of dynamical systems on the bases 
of observed data from the system behavior. Herein 
system is understood as an object in which variables 
of different kinds interact and produce discernible 
signals, usually called outputs. The external signals 
(stimuli) that can be manipulated by the observer are 
called inputs but there may also be disturbances that 
cannot be fully controlled by the observer [7]. 
 
One of the key aspects of system identification is the 
definition of the model parameters. This can be 
achieved by extracting the required information from 
observed data. The procedure of modeling is, usually, 
application dependent and often has its roots in 
tradition and specific techniques in the application 
area in question [7]. Basic techniques typically 
involve structuring of the process into block diagrams 
with blocks consisting of simple elements. 
Assembling these blocks is, now days, frequently 
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done by means of computers, thus the final product is 
a software-system. 
 
In Fig. 1 a single-degree-of-freedom oscillator is used 
to illustrate the procedures involved in developing a 
model. Assume that the oscillator is capable of 
modeling the behavior of a variety of structures. If 
this is so, then it is a matter of defining the 
characteristics of the model parameters such as the 
spring stiffness , the damping c , and the mass  to 
develop a system.  The equation of motion describing 
the response of this system is given by 

k m
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Fig. 1. Single-degree-of-freedom mechanical system  

 
Traditionally, through a linear modal analysis of 
mechanical systems, the physical parameters in the 
proposed equation are determined from measured data 
[8]. This procedure is valid only for linear systems, if 
nonlinearities were involved in the input-output data, 
the results would be meaningless [9].  
 
For extracting the parameters values, frequency 
response functions are included in the procedure but 
this step introduces both random and bias errors. The 
key to successful applications is an understanding of 
these errors and a diligent effort to minimize them. 
The most common approach to minimization is the 
supervised technique that optimizes the performance 
(loss function). The errors come from the corruption 
of the outputs by noise  that cause differences 
between the measured system, , and model 

output , for a specified number  of input 
samples. The procedure to achieve the error 
minimization and then optimum system is depicted in 
Fig. 2.  
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The natural logical flow to an identification procedure 
is collecting data, followed by selecting a model set, 
and then the most accurate model is chosen. More 
often than not, the model first picked will not pass the 
validation test.  
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Fig. 2. Minimization process to model optimization 
 
Thus, the various steps of the procedure should be 
revised again (Fig. 3). There are several reasons why 
the model may be deficient: a) the numerical 
procedure failed to locate the more accurate model 
according to the convergence criterion imposed, b) the 
criterion was not properly chosen, c) the model was 
wrongly defined in the sense that it did not contain 
any appropriate description of the system, and d) the 
data set provided misleading information. 
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Fig. 3. System identification loop 

 
3   SI Neurogenetic Approach 
In the process of identifying a dynamic model of an 
unknown system, any representation designed for 
reasoning about such system has to be both flexible 
enough to handle various degrees of uncertainty and 
complexity, and yet powerful. It is by linking the 
estimated model constraints to the important 
phenomena parameters that a designer can represent 
the human-originated knowledge using a numerical 
approximation, in what is commonly known as 
System Identification, SID.  
 

Proceedings of the 1st IASME / WSEAS International Conference on Geology and Seismology (GES'07), Portoroz, Slovenia, May 15-17, 2007      38



Structural identification and parameter estimation 
depend upon input-output analysis wherein the 
relationship between drive and response is used to 
infer information about internal system dynamics 
[10]. For nonlinear systems, parameter estimation is 
difficult and structural identification is even harder. 
Soft Computing, SC, techniques can be used to 
automate the former [11], but the latter has, until 
now, remained the purview of human experts. The 
aim of this work is building a SC layer to automate 
the SID process (diagrammed in Fig. 4) around the 
traditional mathematical techniques and its 
engineering parameters. This layer automates the 
high-level stages of the modeling process (normally 
performed by a human expert) reasoning from the  
input-output information to automatically choose, 
invoke, and interpret the data and the system results, 
defining phenomena parameters most broadly 
applicable (well formalized) and generating 
improvements (better understanding) for models in 
current use.  
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Fig. 4. System identification phases 

 
3.1 Neural Networks generated by Genetic 

Algorithms 
SC [12] is now a widely accepted term to cover those 
techniques including neural networks, NNs, fuzzy 
logic, FL, evolutionary computing, EC, and various 
probabilistic approaches. These methods are used in a 
variety of applications that demonstrate, in some way, 
their ability to tackle problems that contain 
uncertainty or imprecision. NNs [13] offer the ability 
of modeling highly non-linear relationships. 
Evolutionary computing is a term that includes 
genetic algorithms GAs and genetic programming 
GP, techniques particularly useful for optimal 
searching. In this work, a hybrid NN-GAs system 
was selected to develop the SID task. The structural 
and parametric neural learning, which are the 
counterpart of system identification and parameter 
estimation in classical system theory [14], mean the 
synthesis of the network topology (i.e., the number of 
hidden layers and nodes), while parametric learning 
implies determining the weight vectors that are 
associated to each link in a given topology. 

The NN topology selection can be optimized via 
GAs. GAs [15] can be deployed to optimize, at the 
same time, different architecture’s parameters, such 
as activation functions, hidden nodes, and input 
variables, among others. In this work, an optimization 
process is included in the NN generation. GAs are 
used to synthesize the network topology (number of 
hidden layers, hidden nodes, and number of links) 
letting then Back-Propagation BP tune the learning 
net [16].  
 
Typically NNs using BP converge faster than GAs 
due to their exploitation of local knowledge. 
However, this local search frequently causes the NNs 
to get stuck in a local minimum. GAs achieve 
efficient coarse granularity search (finding the 
promising region where the global minimum is 
located) but they are very inefficient in the fine-
granularity search (finding the minimum). These 
characteristics motivated [17] to propose an 
interesting hybrid algorithm in which the GA would 
find a good parameter region which was then used to 
initialize the NN. At that point, Back-Propagation 
would perform the final parameter tuning. For an 
extensive review of the use of GAs in NNs, the reader 
is encouraged to consult [18], [19]. 
 
4   Applications to El Infiernillo Dam 
In spite of the tremendous advances in the field of 
earthquake-dam engineering with the development of 
numerical methods such as the finite element, a series 
of problems have to be fully resolved for the 
confidence on this analytical method to be improved: 
first, the matter of modeling rockfill materials; 
secondly, the balance between the degree of 
complexity of the analytical technique used and the 
level of knowledge of the material properties; and, 
thirdly, the adequacy of the numerical technique in 
capturing the variables that determine the dynamic 
behavior of dams. 
 
Regarding the modeling of rockfill materials there is 
still much to be learned due to the colossal difficulties 
of testing representative samples in the laboratory and 
the relatively limited applicability of geophysical 
field tests. Thus, one has to resort to case histories 
where seismic motions and the ensuing earthquake-
induced dynamic movements have been recorded 
during a number of seismic events with various 
intensities and frequency contents. Two procedures 
are included in this paper that show how to overcome 
(at least partially) this obstacle. One is based on the 
application of a three dimensional finite element 
procedure and the other consists on the use of a 
neurogenetic technique. 
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The Hydroelectric project El Infiernillo was 
completed in 1964 on the Balsas River about 70 km 
from the Pacific Ocean. The maximum section of the 
embankment is 150 m high with average external 
slopes of 1.85:1 (Horizontal:Vertical) considering the 
up- and downstream berms (main section in Fig. 5). 
Construction details of the dam, materials as well as 
their treatment are broadly described elsewhere ([20], 
[21]). The seismic instrumentation consists of digital 
accelerometers (Fig. 5): three on the embankment (E, 
F and G), four on rock (A, B, C and D) and a vertical 
array (H and I). 
 
The seismicity of the zone is one of the highest in 
Mexico and since its construction the dam has been 
subjected to earthquake forces of different 
characteristics and intensities. After the September 
1985 seismic events, the activity at the dam site has 
decreased significantly and although numerous 
earthquakes have been recorded, none of them has 
caused appreciable dam displacement or damage. Of 
all recorded seismic movements, the events S1, S2, 
S3, S4 and S5 have shaken the dam more severely 
(Table 1). In general, these earthquakes have caused 
permanent displacements that have induced shallow 
cracking, mainly parallel to the dam axis. 
 

Table 1. Main characteristics of the more significant 
seismic events 

Transverse Longitudinal Vertical
Amax Amax Amax

(cm2) (cm2) (cm2)
S-1 right bank 72.8 53.7 31.1

11/X/1975 Berm 89.7 83.7 112.1
Crest 300.2 76.6 107.3

S-2 right bank 40.8 52.1 28.7
15/XI/1975 Berm 82.6 80.1 58.9

Crest 191.6 62.1 44.9
S-3 right bank 17 18 15

14/III/1979 Berm 133 124 60
Crest 371 155 184

S-4 right bank 85 83 52
25/X/1981 Berm 131 108 70

Crest 338 194 151
S-5 right bank 131.7 91.4 77.4

19/IX/1985 Berm 294.6 379.3 294.6
Crest

Event Station

 
 
4.1 Analytically-based System Identification 
In case of complex structures such as a dam, finite 
element techniques are usually applied to compute 
the transfer function . This model and the 
system function obtained from the recorded motions 
are used to define the loss function (see Fig.2) which 
is minimized using a least square approach [2]. Both, 
model and system transfer functions are dependent of 
the material shear modulus and material damping 

ratio 

)( fH

G

λ that follow the constitutive model given by 
Eqs. 1 and 2. The parameters , and a b rγ  are 
material dependent (function of plasticity index). 
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where is the quasi-elastic shear modulus, maxG minλ  

is the damping ratio for strain values of 10-4%, maxλ  
is the damping ratio for strain values of 10%. The 
value of  was evaluated based on Seed and 
Idriss (1970)’s recommendation for granular 
materials: , where 

maxG

( ) 21
2max 1000 /

mKG σ= σ m  is the 
mean normal effective stress in lb/ft2 and  is a soil 
parameter that depends mainly on the void ratio. The 
maximum shear modulus for the core material was 
evaluated using [22]: , where  (in 
lb/ft

K2

G Sumax = 2200 Su
2) is the undrained shear strength of the clay soils 

defined from the envelope of the failure lines 
obtained from undrained, unconsolidated, laboratory 
tests.  
 
The magnitude of the undrained strength  was 
defined for the mean stress 

Su

σ m  values computed in 
the dam using finite element analyses (Romo and 
Villarraga, 1989) for the at-the-end-of-construction 
and first-reservoir-filling conditions. The method of 
analysis described above was evaluated comparing the 
theoretical results with the dam responses measured 
during earthquakes that occurred after 1985.  
 
On May 31, 1990 a 5.5 Richter magnitude earthquake 
hit the dam. The response of the embankment was 
recorded at the crest (point E) and point H within the 
embankment body (vertical array). The results 
included in Fig. 6 show that the proposed model is 
capable of reproducing the recorded motions with a 
good degree of approximation.  
 
4.2 Neurogenetic System Identification 
The random nature of seismic excitations, along with 
the limited number of sensors used to monitor the 
dam-system responses, make the modeling of the 
dam dynamic behaviors quite a difficult task. 
Accordingly, a new SID identification technique was 
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Figure 5. Layout of strong motion instruments at El Infiernillo 

developed using the relatively closely spaced 
accelerometers located in the vertical array (clay 
core). The GA-NN proposed is capable of using 
“contaminated” records and the sensors spatial 
configuration to describe the dimensionality of the 
system response. The data base used for neural 

training/testing stages is given in Table 2. The 
identified system is the specific dam element 
(geometry and materials), described by given 
intervals of soil lying between pairs of 
accelerometers. The recording stations used in the 
model as control points, are characterized by their 
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position - {x, y, z} coordinates - and a class 
condition: i) boundary situation or ii) dam response 
information (Fig.7). The two mechanical soil 
properties estimated by this SID process are the shear 
modulus  and the damping ratioG λ . These 
computed “equivalent” properties are based on the 
“effective” layer values between the sensors included 
in the neural training stage. The acceleration records 
and material properties predictions are calculated at 
discrete points that can be located between two 
sensors or in any zone of the earth element.  

 

 
 

Figure 6. Computed and measured motions at two points 
on the main section of El Infiernillo dam 

 
Following this SID process, a GA-NN nonparametric 
framework was obtained to map the input (left 
abutment recordings) to the output time series 
(accelerations data inside the dam). In Fig.8, the 
model and actual values for unseen events (EQ5, EW 
component) are shown. It is remarkable the capacity 
of the GA-NN to characterize the time histories of 
earthquake motions and the accuracy with which 
reproduces the movements through the dam core, Z 
direction (Fig.9). Evaluations for real and virtual 
accelerometer stations (discrete points) show that this 
procedure is a worthy alternative for constructing a 
simple seismic dam-analysis framework (it is not 
necessary the development of a restrictive mesh for 
evaluating responses in the whole dam system).  

Table 2. Data Base Used for Developing the NN 
 

 
EQ-1 EQ-2 EQ-3          

Mmax

Amax
(abutment)

Lat
EIPICENTER

Long

75/11/25                          85/09/19                 92/02/12                

* TRANSVERSAL / LONGITUDINAL / VERTICAL (gals)

5.5

104.5/87.7/129.0

17.58

102.28

8.1

83.7/99.6/142.6

18.08

102.94

5.1

8.1/21.53/22.97

17.73

101.06

2
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2

          EQ-4                 EQ-5                EQ-6

                 94/12/10         96/07/15                          97/01/16

7

6.6

269.9/376.6/541

18.02

101.56

6.5

18.04/31.5/26.18

17.45
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5.1

8.13/19.23/16.2

17.94

102.76
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17.94
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In a second stage the properties  and G λ  are 
evaluated from the GA-NN-accelerations histories 
show a poor agreement with those obtained by 
empirical correlations and laboratory studies. A local 
(for each material and geometry) identification 
algorithm is required (Fig.10). 
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Figure 7. GA-NN topology 
 

To obtain material properties within the dam, it is 
necessary to map the coordinates of the specific point 
into soil parameters. To achieve this, a more 
sophisticated neural model (genetic tuning of the 
weights and function variables) was developed for 
describing materials dynamic behavior via G and λ  
versus shear strain curves. The input variables are the 
coordinates of the recording station and the outputs 
are the values of the dynamic properties. Once this 
training process is completed, G /λ  nodes can be 
interchanged as premises and the coordinates take the 
role of conclusions to corroborate the adequate 
description of the soil mass. The forward-back 
training route, permits to find the parametric changes 
for optimal estimation of 
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Figure 8. NN model results: testing stage 
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Figure 9 GA-NN results: evaluations through dam core (moving along vertical direction), unseen event 
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the shear stiffness and equivalent damping ratio, 
describing the physical soil system (continuous mass 
system) without trying to adjust the observed 
behavior to a simple equivalent system (lumped mass 
models, for example). 
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Figure 10. GA-NN model results: testing stage 

 
As can be seen in Fig.11, this neural model offers 
tremendous insight into the extremely complex 
soil/rockfill system behavior. Based on the 
user/designer necessities the neuronal structure can 
offer a general evaluation for each material, for a 
transition zone or for a discrete point. 
 
4   Conclusion 
For a complicated system such as wave propagation 
through natural materials and the large amount of 
uncertainty inherent to acceleration records and 
dynamic properties, identifying the “true” underlying 
earth dam system is an intricate objective, commonly 
covered using simple equivalent systems that are not 
ideal models of a continuous mass.  It has been 
demonstrated that SC tools for pattern recognition 
analyses using nonparametric identification provide 
essential direct information on the dynamic response 
of the parameter system spatial distribution. Such 
information reduces the indeterminacy problem and 
permits an appropriate model selection.  
 
The advantageous characteristic of the neurogenetic 
model proposed here for evaluating material behavior 
at discrete points inside the dam structure can help to 
reveal the most influential aspects related with its 
seismic responses: material properties (G  and λ ), 
linear or nonlinear material’s behavior, canyon 
configuration, materials zonation (dam-cross-section 
geometry), grain size, etc. 
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Figure 11. Dynamic properties: GA-NN indirect estimations 
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