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Abstract: Ant Colony Optimization (ACO) algorithm is a modern 
Optimization technique solving problems of power system field. It is 
inspired by the behavior of ants in finding paths of the ant colonies to food. 
In this paper, the Max-Min Ant System, an Ant Colony Optimization 
algorithm, is used for solving the Generator Maintenance Scheduling 
problem. 
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1. Introduction 
 

Planning tasks are vital for 
maintaining safe and economical 
operations in modern power systems. 
Planning tasks are categorized into the 
long-term system planning tasks and the 
short-term operational planning tasks. 
System planning tasks concern long term 
investments in power systems and may 
include activities like generation 
expansion through new installations of 
generating units or increase transmission 
capacity through building new power 
transmission lines. On the other hand 
operational planning tasks concern 
activities like generator maintenance 
scheduling, unit commitment or economic 
dispatch. Preventing maintenance 
scheduling of generating units plays a key 
role and affects both system and 
operational planning decisions over the 
planning horizon. The importance of 
maintenance scheduling is based on the 
high cost of the maintenance equipment 

and the need to ensure high system 
reliability. So, the objectives of generator 
maintenance scheduling (GMS) could be 
to assure system reliability or minimize the 
maintenance and operational cost with 
respect to both generating units and power 
system constraints. The goals concerning 
GMS can be divided into two categories, 
those which are based on reliability and 
those that rely on economic cost. A 
common reliability criterion is to maintain 
a certain level of reserve generation during 
the operational planning period. This is 
exactly our concern in this paper which 
can be achieved by minimising the sum of 
squares of reserved generation [1]. 
However, the computation of a 
maintenance schedule involves several 
other factors – constraints, which should 
be met in order to ensure system security 
and reliability. Typical constraints of a 
GMS problem may include according to 
[1]: 

• Maintenance window 
constraints, which define the 
possible times and the 
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duration of maintenance for 
each generating unit. 

• Resource constraints, which 
specify the limits on the 
resources needed for 
maintenance at each period. 

• Crew constraints, which 
consider the manpower 
availability for maintenance 
work. 

• Exclusion constraints, which 
prevent the simultaneous 
maintenance of a set of units. 

• Sequence constraints, which 
restrict the initiation of 
maintenance of some units 
after a period of maintenance 
of some other units. 

• Reliability constraints, which 
consider the risk level of a 
given maintenance schedule. 

• Load constraints, which 
consider the demand on the 
power system during the 
scheduling period. 

• Transmission capacity 
constraints, which specify the 
limit of transmission capacity 
in an interconnected power 
system. 

Geographical constraints, which limit 
the number of generators under 
maintenance in a region. 

 

GMS problem is a hard combinatorial 
optimization problem and is classified as a 
deterministic cost-minimization problem. 
Many traditional optimization methods – 
dynamic programming, integer 
programming and branch-and-bound – 
have been proposed to solve the problem. 
All of them function well for relatively 
small problem instances, but as the 
problem size increases the size of the 
search space increases exponentially and 
the computational time of these methods, 
as well. These limitations make the above 
methods inappropriate to apply in a real 
world GMS problem. 

However, the drawbacks that 
traditional approaches suffer from can be 
overcome using modern optimization 
techniques [10]. These alternative 
methodologies include genetic algorithms 
(GAs) [1, 11, 12], simulated annealing 
(SA) [12, 9], tabu search (TS) [12, 9] and 
neural networks [13]. These methods have 
been applied successfully on their own, 
but hybrid approaches have also been 
reported in literature [12, 9].    

This paper deals with maintenance 
scheduling of generating units and relies 
upon the work of Aldridge, Dahal and 
McDonald presented in the book Modern 
Optimization Techniques in Power 
Systems [1]. We provide a different 
approach using a nature inspired 
algorithm, the MAX-MIN Ant System 
(MMAS), which handles well hard 
combinatorial optimization problems 
regardless of the problem size. 

The rest of this paper describes the 
GMS problem and how MMAS is applied 
to a GMS problem instance. In section 2 
the problem formulation is given. A brief 
introduction to Ant Colony Optimization 
(ACO) and MMAS is given in section 3. 
Section 4 describes the design of MMAS 
algorithm, focusing on the key aspects of 
representation and heuristics as well as the 
experimental algorithm itself. Section 5 
gives the computational results and section 
6 presents some useful conclusions. 
 
 
 

2. Generator Maintenance Scheduling 
problem 
 

2.1 Problem formulation 
 

As it is already mentioned, the 
problem we delve into is based on the 
problem described in [1]. The goal of this 
GMS problem is to ensure system 
reliability by minimizing the sum of 
squares of reserve generation in every 
period. GMS problem requires 
maintaining each unit – without 
interruption – for a specified duration 
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within a specific window while the 
available manpower for maintenance work 
is limited. The available crew each week is 
bounded to 20 people and the peak load of 
the system is 4739 MW. Below, Table 1 
presents the capacities, allowed periods, 
duration of maintenance and the 

manpower required for each period of 
maintenance for every unit of the system. 

 

 

 

Table 1: Data for the test system 

Unit Capacity 
(MW) 

Allowed 
period 

Outage 
(weeks) 

Manpower required for 
each week 

1 555 1-26 7 10+10+5+5+5+5+3 

2 555 27-52 5 10+10+10+5+5 

3 180 1-26 2 15+15 

4 180 1-26 1 20 

5 640 27-52 5 10+10+10+10+10 

6 640 1-26 3 15+15+15 

7 640 1-26 3 15+15+15 

8 555 27-52 6 10+10+10+5+5+5 

9 276 1-26 10 3+2+2+2+2+2+2+2+2+3 

10 140 1-26 4 10+10+5+5 

11 90 1-26 1 20 

12 76 27-52 3 10+15+15 

13 76 1-26 2 15+15 

14 94 1-26 4 10+10+10+10 

15 39 1-26 2 15+15 

16 188 1-26 2 15+15 

17 58 27-52 1 20 

18 48 27-52 2 15+15 

19 137 27-52 1 15 

20 469 27-52 4 10+10+10+10 

21 52 1-26 3 10+10+10 

 

In order to formulate the GMS 
problem, the following variables are 
introduced: 

  

i   index of generating units 

I  set of generating units 
indices 

N  total number of generating 
units 

t  index of periods 

T  set of indices of periods in 
planning horizon 

ei   earliest period for 
maintenance unit I to begin 
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li   latest period for 
maintenance of unit i to end 

di   duration of maintenance 
for unit i  

Pit   generating capacity of unit 
i in period t  

Lt   anticipated load demand 
for period t 

Mit  manpower needed by unit i at 
period t 

AMt  available manpower at 
period t 

 

We have no reason to change the 
problem formulation presented in [1], in 
order the reader to follow easier our 
alternative to GAs for the GMS problem. 
For the completeness and the clarity of the 
approach in [1] some additional sets have 
to be defined.  

So, let  be the set of periods 
when maintenance of unit i may start, so 
that for each unit i is 

. 
Additionally, 

TTi ⊂

1}dlte:T{tT iiii +−≤≤∈=

 

⎭
⎬
⎫

⎩
⎨
⎧

=
otherwise                                     0

  tperiod in emaintenanc  starts iunit  if  1
X ti

 

 

is defined, to be the maintenance start 
indicator for unit Ii∈  in period iTt∈  . 
Furthermore,

{ tk1dt:TkS iiti ≤≤ }+−∈=  is 
defined, where Sit is the set of start time 
periods k such that if the maintenance of 
unit i starts at period k that unit will be in 
maintenance at period t.  

Finally,  is the set of 
units which are allowed to be in 
maintenance in period t. 

{ it Tt:iI ∈= }

 

The objective function, which is to 
minimize the sum of squares of reserve 
generation, as mentioned above, as well as 

the GMS problem constraints are given 
below. 

 

GMS objective function 
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maintenance window constraint 

∑
∈

∈=
iTt

it Iiallfor1X  (2) 

      

 

manpower constraint 

∑ ∑
∈ ∈

∈≤
t tiIi Sk

tkiki TtallforAMMX  (3) 

 

load constraint 

T∈≥−∑ ∑∑
∈ ∈∈

tallforLPXP
t tiIi Sk

tkiki
Ii

ti
  (4) 

 

 

 

3. ACO algorithms 

Generally, ACO is a family of 
algorithms which have been inspired by 
the foraging behaviour of real ant colonies. 
They have recently developed and have 
been applied to common hard 
combinatorial problems with encouraging 
results [4].  

The ACO algorithms are using agents, 
called ants, which iteratively construct 
candidate solutions for the optimization 
problem under consideration. Ants build a 
solution probabilistically by iteratively 
adding solution components to their partial 
solutions influenced by heuristic 
information of the problem solved, if any, 
and (artificial) pheromone trails which 
change dynamically during the 
construction procedure to reflect ants’ 
acquired search experience. In theory, 
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ACO algorithms can be applied to any 
combinatorial optimization problem, by 
simply defining the solution components 
of the problem which will be used by the 
ants to build a candidate solution with 
probable pheromone deposit (more details 
can be found in [4]. Every ant starts with 
an empty solution and iteratively adds a 
solution component without backtracking 
until a complete candidate solution is 
obtained. After the completion of the 
solution construction procedure, ants 
deposit pheromone to every solution 
component they have used to build their 
candidate solution. Those solution 
components which are part of the better 
solutions or simply are used most by the 
ants receive greater pheromone amounts, 
and thus are made more preferable to ants 
in future iterations of the algorithm. In 
order to avoid algorithm stagnation and 
achieve greater exploration of the search 
space, pheromone evaporation on each 
pheromone trail by a factor ρ takes place 
before pheromone deposit.  

The first ACO algorithms – such as 
Ant System – might construct solutions 
which either were not optimal or the 
algorithm performance was not 
competitive compared to state-of-art 
algorithms of the problem domain. These 
drawbacks were addressed by later 
variations of the algorithm, which 
basically aimed to a stronger exploitation 
of the search history in order to guide ants’ 
search process. MAX-Min Ant System, 
which is used in this paper for tackling 
GMS problem, achieve this objective by 
allowing only the ants found the best 
solutions to deposit pheromone during 
pheromone trail update. Also, MMAS may 
easily and effectively extended by local 
search algorithms, which may further 
improve solutions’ quality. In this hybrid 
algorithm model ACO algorithms are used 
to produce an initial set of solutions and 
then let local search algorithm to operate 
on this. 

In general all ACO algorithms for 
static combinatorial problems are 
following the following algorithmic 
scheme: 

 

ACO procedure for static 
combinatorial problems 

 Define parameters, initialize 
pheromone trails 

   

  while termination 
condition not met 

   construct 
solutions 

   apply local search 
algorithm //optional 

   update 
pheromone trails 

  end 

end 

 

 

After the definition of some 
parameters and the initialization of 
pheromone trails, a main loop takes place 
until a termination condition is met. 
Termination condition could be a specific 
cpu time limit or a number of constructed 
solutions. In the while loop, ants construct 
effective solutions, which optionally can 
be improved by a local search algorithm. 
Finally, pheromone trail update takes 
place. 

Every ACO algorithm has initially 
been tested on Travelling Salesman 
Problem (TSP) [5, 6, 8] and Quadratic 
Assignment Problem (QAP) [7, 8] which 
are classical, well known NP-hard 
combinatorial optimization problems with 
encouraging results in terms of both 
computation time and solution quality 
(constructed solutions approach optimal). 
As already mentioned, the research on 
ACO algorithms has shown that shorter 
execution times can be achieved by a 
stronger exploitation of best solutions 
found. However, such strategies may 
guide in a premature convergence of 
algorithm in a local optimum. So the key 
for ACO algorithms in order to achieve 
shorter computation times is the 
exploitation of best solutions found, while 
an effective mechanism prevent algorithm 
from premature stagnation. These are 

 5

Proceedings of the 2nd IASME / WSEAS International Conference on Energy & Environment (EE'07), Portoroz, Slovenia, May 15-17, 2007      167



MAX-MIN Ant System for Generator Maintenance Problem 

some key features taken into account in 
MMAS design in contrast to Ant System. 
To summarize, there are three key points, 
which differentiate MMAS from Ant 
System [8]:  

 

• To exploit the best solutions 
found during an iteration or 
during the run of the 
algorithm, after each iteration 
only one single ant adds 
pheromone. This ant may be 
the one which found the best 
solution in the current iteration 
(iteration-best ant) or the one 
which found the best solution 
from the beginning of the trial 
(global-best ant). 

• To avoid stagnation of the 
search the range of possible 
pheromone trails on each 
solution component is limited 
to an interval [τmin, τmax]. 

• Additionally, we deliberately 
initialize the pheromone trails 
to τwmax, achieving in this 
way a higher exploration of 
solutions at the start of the 
algorithm. 

 

4. Algorithm description 
 

We need to transform the 
mathematical problem formulation 
described in section 2.1 in ACO terms and 
design an effective and efficient MMAS 
algorithm to tackle GMS problem. Firstly, 
the assignment problem, that is the 
assignment of a unit to be maintained to a 
period, should be tuned into an optimal 
path searching problem, which is a 
problem that MMAS algorithm can solve. 
The first step towards this goal is to create 
a graph representation of GMS problem, 
which will be utilized by the MMAS 
algorithm to construct solutions for the 
problem. Next we should decide for the 
appropriate representation of pheromone, 
which ants will deposit on graph arcs and 
the problem dependant heuristic 

information, which affects every step of 
solution construction process.  

 

 

4.1 Graph construction 

 

A fundamental principle of ACO 
metaheuristic algorithms is the 
representation of the problem under 
consideration as a graph [2]. Every node of 
this graph should correspond to a solution 
component and every path to a solution of 
the problem. So, for the GMS problem 
every unit Ii∈ should be mapped to a 
period iTt∈ . This mapping indicates that 
unit Ii∈  starts maintenance at period 

iTt∈ . This graph representation is given 
by, and we have to decide if ants will 
traverse the set of units and choose an 
appropriate period for mapping or ants will 
traverse the TI× set of periods and choose 
a favorable unit for mapping. Both 
approaches have their pros and cons. In 
our case the second alternative has been 
selected, because the fulfillment of the 
window maintenance constraint – 
described by (1) – becomes easier which 
results in fewer evaluations and improved 
performance. Figure 1 depicts the 
constructed graph. But as the number of 
periods |T| is much greater than the 
number of units |N|, we need to introduce a 
new set of virtual periods 

{ }'
|N|

'
2

'
1

' t...,,t,tT = , since the total number 
of mappings (unit to start maintenance 
period) is equal to the number of units |N|. 
Every virtual period maps to an actual 
period. To overcome the complexities of 
using a function to designate how a virtual 
is related to an actual period , 
the null unit is introduced, to correspond 
with periods that do not have mapped with 
any actual unit 

TT:f ' →

Ii∈  (Figure 2).  In 
contrast to actual units, null unit can be 
mapped to periods many times and cannot 
be part of a solution or be involved in 
pheromone update process. 
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Figure 1: Every ant traverses the set of virtual periods and for each one of them chooses 
the unit to start maintenance for. 

 

 

 

End 
Begin 

Null Unit 

i1

1t  
'
1t 2t  

'
1t nt  

i2

 
Figure 2: Every ant traverses the set of periods and for each one of them chooses an actual 
unit or even the null unit to start maintenance for. 

 

Every ant traverses the above graph 
and creates assignments (mappings) of 
periods to units, which comprise part of 

problem solution (solution components) 
that the ant will iteratively create. In each 
step every ant chooses the next unit for 
mapping for the current period. This 
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choice is based on a probabilistic decision 
which is biased by the pheromone trail 
amount itτ  and the locally available 
heuristic information itη and is given by 
equation (5):  

 

∑
∈

−−

−−
− ⋅

⋅
=

Ii

β
1iit

a
1iit

β
1iit

a
1iit

1iit ))(Mη())(M(τ
))(Mη())(M(τ)(Mp (5) 

 

where α, β are two parameters which 
determine the relative importance of 
pheromone trail and heuristic information 
and  corresponds to the mapping 
(assignment) of current period to unit i-1. 
So equation (5) calculates the probability 
an ant to choose unit i while traversing the 
set of periods T and create a new partial 
mapping M

1−iM

i. This partial mapping is added 
to previous partial mapping Mi-1 in order to 
create a complete mapping which actually 
forms a GMS problems’ solution. Each ant 
stores the units chosen in each step to a list 
(just as the tabu list in Tabu Search 
algorithm). The units in the list should not 
be used by an ant until the completion of 
solution construction and are used to form 
ant’s feasible neighbour in each 
construction step.  

 

 

4.2 Pheromone trails 
 

Pheromone is deposited on the arcs of 
the graph and guides each ant’s choice in 
every construction step. It is necessary to 
make clear that that arcs that contain the 
null unit do not receive any pheromone at 
all. It was introduced in our algorithm 
description just as an auxiliary notation in 
order to complete the graph representation 
and does not affect solution construction 
by any means. In MMAS not all the ants 
deposit pheromone on the arcs, but the one 
found the best solution in the trial (global-
best solution). The pheromone update rule 
is given by the equation 

 

best
itiit1iit Δτ)(Aτρ)(Aτ +⋅=+  (6) 

 

where  and  
is the cost of global-best solution and (1-ρ 
) is a parameter that models pheromone 
evaporation. 

)f(s/1Δτ bestbest
it = )f(sbest

4.3 Heuristic information 
 

A very simplistic method utilized in 
this paper for heuristic information 
computation is given by the following 
rule: 

 

)(MPCV1
1)(Aη

iit
iit +
=  (7) 

where  is a function that 
counts the total number problem constraint 
violations. It is possible to bias each 
problem constraint using weights which 
correspond to the relative importance of 
each constraint (or assign weights based 
on constraint categories, that is hard and 
soft constraints). In case of GMS problem 
constraint (3) is biased by a five times 
greater weight than constraint (2).  

)(MPCV iit

 

 

4.4 The algorithm 
 

The MAX-MIN algorithm developed 
for GMS problem is  

 

Algorithm 

Compute Ti  

Compute It

 

while termination criteria not met  

 for each ant do 

  for each period  do Tt∈

   choose unit 
Ii∈ for maintenance 

(probabilistic decision) 
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(unit choice creates a partial mapping of 
unit i to period t, Mit) 

   add partial 
mapping to ant’s constructed solution 

(constructed solution CS) 

  end 

  evaluation of solution 
(CS) constructed by the ant 

(evaluate solution using objective 
function) 

  S iteration-best = min {S iteration-

best, CS} 

 end 
S global-best = min{S global-best , S 

iteration-best} 

 Global update of pheromone trails 

using S global-best, τmax, τmin.

end 

 

In every iteration each ant constructs a 
complete solution for the GMS problem, 
which is a complete mapping of units to 
periods. Every ant for each period selects 
one of the available periods (feasible 
neighbour), which are elements of the set 
Ti given that it is not already selected (not 
in tabu list). The Ti is calculated before the 
execution of the actual algorithm (pre-
calculated set). The selection of unit to 
start maintenance follows the probabilistic 
rule given in equation (5). Finally, each 
ant constructs a solution (CS) and the best 
one is assigned to Siteration-best. After all ants 
have completed their tours the iteration is 
considered to be finished and the best 
solution found among the iterations so far 
is assigned to Sglobal-best. The components of 
this solution will be used to update the 
corresponding pheromone trail values 
according to equation (6). If any of the 
pheromone values exceed the limits of τmax 
and τmin, they are adjusted accordingly. 
The algorithm continues with other trials, 
until a specified number of iterations or 
time limit is reached. 

 

 

5. Results 
 

The algorithm described in the 
previous section was created and executed 
in a PC with Mobile Intel Pentium 4-M 
CPU 2.00 GHz using IBM WebSphere 
Studio Application Developer 5.1 with 
Sun’s jre 1.4.2. As a pseudo-random 
number generator was used the Sun’s 
java.util.Random class [14]. 

In order to develop a feasible MMAS 
algorithm for any optimization problem it 
is essential the appropriate selection of 
algorithm parameters. Many different 
combinations of values have been tested 
on our GMS problem instance and the 
values produced the best results are 
provided in Table 2. 

 
Table 2. MMAS algorithm parameter 
values for GMS problem 

Parameter Value 

ρ Pheromone 
evaporation factor 0.2 

τmax = 1/ρ
Pheromone value 
upper limit 5 

τmin
Pheromone value 
lower limit 0.0010 

α 
Relative 
importance of 
pheromone trails 

1.0 

β 

Relative 
importance of 
heuristic 
information 

1.0 

m Number of ants 10 
 
 

The minimization of objective function 
value for GMS problem – given by 
equation (1) – during algorithm execution 
is represented in Figure 3. The algorithm 
converges at 55th iteration, nevertheless a 
slight decrease of algorithms’ objective 
function value is observed also in 85th 
iteration. 
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Figure 3. Depiction of objective function. After the 55th iteration the objective function 
receives the lowest value. 

  
 

Finally, the pheromone matrix after 
101 iterations of the algorithm is 
presented. 

 

 

Unit Period Pheromone Trail 

1 13 4.999999999223381 

2 41 4.999999996929478 

3 2 5.0 

4 11 4.999999956360151 

5 29 4.999928655455962 

6 5 4.85929769601676 

7 15 4.999999999223381 

8 34 4.999928655455962 

9 1 5.0 

10 15 4.999999999223381 

11 9 4.999999996929478 

12 27 5.0 

13 8 4.999999996929478 

14 12 4.999999957877433 

15 14 4.999999999223381 

16 3 4.85929769601676 
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17 32 4.999992339437917 

18 31 4.999999958132063 

19 28 4.999992374082709 

20 40 4.999999996929478 

21 10 4.999999996929478 
 
Table 3. Pheromone matrix after 101 iterations 

 

 

6. Conclusions 
 

It is fundamental for developing not 
only MMAS but any ACO algorithm for 
an optimization problem to convert – 
represent it as a graph. That was the first 
step in tackling Generator Maintenance 
Problem in our case. Next, the solution 
components (the mapping of a unit and a 
period that the maintenance of that unit 
may start) were defined. The pheromone 
matrix representation and a simple yet 
convenient method for heuristic 
information computation was the next step 
in our approach.  

The results above seem to be 
encouraging for ACO algorithms 
utilization for solving Generator 
Maintenance Problem. The next step could 
be the exploitation of a local search 
algorithm, such as 2-opt, 3-opt, Tabu 
Search, Simulated Annealing, within the 
MMAS in order to obtain even better 
results.  
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