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Abstract: - Fuzzy decision making on trajectory direction changes of pollution monitoring robots is addressed in 
this paper. Measured pollution densities and the possible existence of obstacles are used as the two fundamental 
data. While pursuing water pollution monitoring tasks, underwater robots may experience serious difficulties due 
to various kinds of obstacles in the water. Therefore, one of the major concerns for underwater robots is to detect 
and recognize obstacles in advance for natural and smooth movements without collision. Trajectory direction 
changes of a robot should be made so that the robot can move in the direction that the measured pollution data is 
increased most, especially when there are no obstacles. When there are obstacles along the robot’s path in the 
polluted area, proper trade-off should be made between the steepest ascending direction of pollutant densities and 
the possibilities of collision with obstacles or traps in them. Our experimental results show that underwater robots, 
which change the direction following the proposed fuzzy decision results, make their movement to the area of 
higher pollution density without collision. 
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1   Introduction 

Since there are various kinds of water plants and 
trashes, obstacle detection and collision avoidance are 
the primary and crucial tasks for underwater robots to 
make smooth and natural movements. The robots need 
to detect the obstacles in advance and move without 
collision. Robots make appropriate propulsion 
direction changes to avoid collision based on the IR 
distance sensor data. Analyzing image data of the 
target areas to recognize possible obstacles is the basic 
method in the water. Despite advantages of image 
systems, such as cameras and sonar, there are many 
kinds of situations where image data cannot be 
properly applied. The common reasons for this 
restriction are the limited capabilities of processors, 
ranges of short distances, and adverse underwater 
conditions to get sufficient image data. 

For one of the practical applications of underwater 
robots, a new method of the water pollution mapping 
and tracking system by using a fish robot based on 
ubiquitous sensor networks is introduced [1]. In the 
water pool imitating the similar situation such as the 
diffusion of a real water pollution source, the robot 
searches higher reflected light intensity from the 
bottom of the tank with different colors to track the 
highest level position.  

Fuzzy decision making on trajectory direction 
changes of monitoring robots is proposed, which is 
based on two fundamental data of the measured 
pollution and the possible existence of obstacles. 
Underwater robots may experience serious difficulties 
in doing water pollution monitoring tasks due to 
various kinds of obstacles in the water. When there are 
obstacles along the robot’s path in the polluted area, 
appropriate trade-off methods should be applied 
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between the steepest ascending direction of pollutant 
densities and the possibilities of collision or traps in the 
obstacles. Our experimental results show that 
underwater robots, which change direction following 
the proposed fuzzy decision results, make their 
movement to the area of higher pollution density 
without collision.  

In section 2, a robot for the water pollution 
monitoring and tracking system is presented. The 
estimation and recognition of obstacles using distance 
sensors are covered in section 3. The simulation of 
water pollution circumstances and the actuating control 
of robots for monitoring are given in section 4. Fuzzy 
decision making on direction changes of pollution is 
proposed in section 5. Experimental results are given in 
section 6, followed by conclusion. 
 
 
2   Underwater Robots 
We have constructed several types of fish-shaped 
underwater robots in our lab. The robots that have 
various structures and shapes of real fish imitate the 
ways the real fish swim. For instance, four servo 
motors are used at the caudal fin of the robot for 
propulsion and horizontal direction control. Distance 
sensors, which are mounted at the front and two sides 
of the head, measure the distance to an obstacle. Every 
signal is processed based on the MSP430F149 by TI. 
User commands and sensor data are transmitted 
between the fish robot and a host notebook PC either 
by Bluetooth modules or by an RF module, which 
depends on operation depth. A fish robot is shown in 
Fig. 1. 
 

 
Fig. 1. Underwater fish-shape robot 

The infrared distance sensor, regardless of 
obstacle color, size and angle, is generally used to 
measure the distance between the robot and an 
obstacle. Three infrared distance sensors, GP2D12s, 
are used to measure the distance from the fish robot to 
the wall or obstacles. The detectable range is reduced 

to about 12-30cm underwater, though the range is 
10-80cm in the air. The configuration of the sensors on 
the fish robot’s body is shown in Fig 2. 

Since obstacle avoidance is the most important in 
mobile robot, whether it is wheel based or not, lots of 
previous studies have presented a variety of methods 
and applications [2, 3, 4, 5]. 

 

 
 

Fig. 2. Sensor configuration on a fish robot 

 
Table 1. Specifications of a fish robot 

Item Specification 
Length 73Cm 
Width 12.5Cm 
Height 22.5Cm 
Weight 4950g 
Length of tail fin 42Cm 
Maximum angle of tail fin 80° 
Minimum rotation radius 31Cm 
Maximum speed 70Cm/sec 
Maximum torque of motors 7.4KgCm at 6V 
Angular speed of motors 300°/sec 

 
 

 

 
Fig. 3. Lower body and caudal fin of a fish robot 
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3   Recognition of Obstacles 
Obstacle models, which consist of two planes, are 
assumed to be simple to find the basic characteristics 
of the randomness of obstacles. The angles range from 
90 to 270 degrees in the water tank as shown in Figure 
4(a). Underwater robots can approach obstacles with 
different angles and shifts of obstacles as shown in (b) 
and (c). 

 
(a) plane angles of obstacles 

 

 
(b) rotation of obstacle 

 

 
(c) shift of obstacle 

Fig. 4. Various shapes and positions of obstacles 

Figure 5 shows geometric relationships of sensor 
data for an obstacle example. Let the lines passing 
through LP  and RP  be L, LP  and SP  be LL, SP  and RP  
be LR, and the slopes of the lines be m , Lm , Rm , 
respectively. The estimations of the plane angle of an 
obstacle, rotation and shift of an obstacle, distance to 
an obstacle are made from the measurements of the 
three IR sensors. 

While a robot is moving there is a considerable 
level of noise due to waves, vibration of the actuators 
or the scanning motor itself. Therefore the discrepancy 
of the scanning sensor data should be compensated 
using the distance data of the fixed sensors at both 
ends. We propose a method that transforms the raw 
shape data from the scanning sensor to the real 
obstacle shape irrelevant to the rotation and shift of the 
obstacle using the distance data of the fixed sensors. 

 

  
 

(a) Obstacle without corner (b) Obstacle with a corner 

Fig. 5. Geometric relationship of sensor system 

-10 -5 0 5 10
0

5

10

15

20

25

Cm
C
m

 
(a) Scanned data 
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(b) Estimated angles from left and right end points 

Fig. 6. Angles of an obstacle from two left and right 
points to each scanned point 

 
In Figure 6(a), scanned data for an obstacle which 

has a 90 degree corner is shown in a dotted line. 
Estimated angles from the far left measurement are 
denoted by a line made up of squares, and the 
estimated angles from the far right measurement are 
denoted by a line made up of diamonds, as shown in 
Figure 6(b). The data denoted in a line of diamonds 
shows almost constant -20° as the motor angle 
changes from +11° to -8°. We assume this constant 
angle to be Rm . The line of squares indicates +74° at 
the motor angle of -11° and then it drops sharply. We 
assume the average of the first three angles to be Lm . 
Therefore, the estimated obstacle angle is about 89°, 
and the corner point is measured at the average of -11° 
and -8°. 
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Figure 7 shows reconstructed results when the 
obstacle which has 120° is rotated in five different 
ways.  
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Fig. 7. Reconstruction and feature points of the 

same angle obstacle in five positions 
 

4   Tracking Direction Control 
A new system we propose is that a fish robot tracks 
the water pollution source autonomously in the real 
circumstance. We made an artificial model 
circumstance similar to the real circumstance. It is 
general that a water pollution source diffuses widely 
and in a circular pattern at static condition, for 
example, in the lakes and sea, except in the rivers 
which have strong stream.  

The fish robot can detect higher reflection 
intensity to infrared among the different colors that 
are reflected from the bottom to an LED light source. 
In order to search the place showing higher intensity, 
we need to make the fish robot’s head swing 
periodically to find a wide area for one period 
swimming. The basic strategy for tracking is a swing 
of the body. The robot changes the direction to find 
higher intensity of reflection to the light source. 

 

φ

 
Fig. 8. Head swings due to tail fin movement 

 

 
Fig. 9. Patterns of head swing 

 
Equation (1) shows general swim function.  
 

( ) sin(2 ) ( )i i i i iA t K Am ft tπ θ= − + Δ   (1) 
 

iA is the angle of i-th tail motor, iK is amplitude 
factor, iAm  is amplitude, f is frequency of caudal fin, 

iθ  is phase delay of i-th  motors, and iΔ  is deflection 
angle for slow and quick turn. We use 10 degree 
maximum amplitudes of angle and 35 degree phase 
delays for general swim. Swim frequency is 0.5Hz. 

The fish robot’s ability to search for a wide area 
while swimming is considered as the basic strategy of 
tracking higher pollution intensity. The intensity of 
infrared in swing trajectory is measured by the sensor, 
and the highest intensity is found during the half cycle 
of each swing. When the highest intensity is found at 
the right side, the robot must change the direction to 
the right. Thus, iΔ in equation (1) must be decreased 
for direction change to the right, while it must be 
increased for direction change to the left. The fish 
robot continuously changes the direction for the place 
which shows higher reflection intensity to the light 
source and it can find the highest intensity place. For 
an autonomous tracking, simple commands are used 
for direction changes; for example, ‘If the intensity of 
the left side is higher than the right side, then turn left,’ 
‘If the intensity of the right side is higher than the left 
side, then turn right,’ and ‘If the intensity of one side is 
similar to the other side, go straight.’ Though these 
simple and concrete commands produce good results 
for tracking, it is impossible to apply these oral 
commands to our microcontroller in a sophisticated 
way. Thus, for easy implementation of the controller, a 
simple fuzzy logic is used in our study.  
 
 
5   Fuzzy Decision Making on Direction 

Changes 
Fuzzy decision making on trajectory direction 
changes of monitoring robots should be introduced 
for easy implementation of the controller. We use two 
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fundamental data of the measured pollution and the 
possible existence of obstacles in real situations. 
Underwater robots may face serious difficulties 
doing water pollution monitoring tasks due to various 
kinds of obstacles in the water. When there are 
obstacles along the robot’s path in the polluted area, 
appropriate trade-off methods should be applied 
between the steepest ascending direction of pollutant 
densities and the possibilities of collision with the 
obstacles or traps in them. 

 

  
Fig. 10. Fuzzy membership functions inputs and 

control output variables 

Since both measured data of obstacles and 
pollution intensities have ambiguity in nature, 
measured inputs and control outputs are described by 
fuzzy variables as shown in Fig. 10. The ‘Left’, 
‘Center’, and ‘Right’ in Fig. 10(a) mean that the 
intensities of pollution index in left, center, and right 
side are higher than any other ranges, respectively. 
The corresponding fuzzy variables are represented in 
Fig. 11. The direction control of the tail fin 
considering both obstacles and pollution density is 
carried out using fuzzy inference. The fuzzy rules are 
summarized in Table 2. In the table, O.S. represents 
Obstacle Status, P.I. is Pollution Index and X is ‘don’t 
care’. Left, Center, and Right are the input positions 
of an obstacle. Short, Medium, and Long express 
distances from a sensor to the obstacle. Every output 
in Table 2 has two directions: Temporal Direction 

and Main Direction. Main Direction is the output 
variable when there are no obstacles while Temporal 
Direction is the one when an obstacle is detected.  

 
Fig. 11. Fuzzy variables of direction and 

distance for obstacles 

Table 2. Fuzzy rules for direction changes  

P.I.
O.S. Left Center Right 

Short RB/LB RB/CT RB/RB
Medium RS/LB RS/CT RS/RBLeft

Long X/LB RS/CT RS/RB
Short LB/LB RB/CT RB/RB

Medium LB/LB RS/CT RB/RBCenter
Long LS/LB RS/CT RS/RB
Short LB/LB LB/CT LB/RB

Medium LS/LB LS/CT LS/RBRight
Long LS/LB LS/CT X/RB

(RB: Turn Right Big, RS: Turn Right Small, CT: go 
Center, LS: Turn Left Small, LB: Turn Left Big) 

 

 
Fig. 12. Flow chart for the direction changes 
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Examples of fuzzy rules are as follows; 
* R1: If P.I. is Left and O.S. is LS, then Temporal 

Direction is RB and Main Direction is LB.  
* R2: If P.I. is Left and O.S. is LM, then Temporal 

Direction is RS and Main Direction is LB.  
* R3: If P.I. is Left and O.S. is LL, then Temporal 

Direction is X and Main Direction is LB.  
 

Typical experimental results of trajectories for 
directional fuzzy control are denoted in dots in Fig. 
13. They show successful collision avoidance while 
searching for higher pollution density areas. 

 
Fig. 13. Experiments of direction fuzzy control 

 
 
6   Conclusion 
Fuzzy decision making on trajectory direction 
changes of pollution monitoring robots is addressed 
in this paper. We use two fundamental data of the 
measured pollution and the possible existence of 
obstacles. When there are obstacles along the robot’s 
path in the polluted area, proper trade-off should be 
made between the steepest ascending direction of 
pollutant densities and the possibilities of collision 
with the obstacles or traps in them. Our experimental 
results show that underwater robots, which change 
the direction following the proposed fuzzy decision 
results, make their movement without collision to the 
area of higher pollution density. 
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