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Abstract: - This paper proposes to present a new method to calculate unsteady heat conduction for cylinder 
symmetrical geometry. We will investigate the situation where the temperature field and heat flux created around a 
heat source placed in finite space are determined. Such a situation arises when we define the temperature field and 
heat loss around district heating pipes laid underground as well as in the case of geothermal wells. Growing energy 
prices increasingly justify the use of geothermal energy. It is well-known that geothermal energy, thermal water 
and its heat can be used directly but if a higher temperature level is needed we must install a heat pump or a boiler 
plant to meet peak demands. The method presented in this paper can also be used for the energy analysis of 
geothermal wells.
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1 Introduction
District heating is widely used in energy supply, 
transporting the heat through pipes from the heat 
source to the consumer. In Hungary geothermal 
energy plays a significant role and there are great 
possibilities to increase the use of geothermal energy 
and facilitate the wide-spread installation of heat 
pumps.

2 Heat loss of geothermal wells and 
district heating pipes in unsteady state
This paper presents a method to calculate the 
temperature field around district heating pipes laid 
underground as well as geothermal wells and the heat 
loss of thermal water extracted. This enables us to 
perform the energy analysis of the wells and evaluate 
their energy goodness at certain working points and 
for various water yields. We are aware that the steady 
operation of wells should be ensured but a change of 
working points may occur or even a natural decrease 

of yield. In this case we face unsteady heat 
conduction around the well. (Fig. 1)

In the case of district heating pipes unsteady
operation occurs when the pipes are started and the 
heat loss by far exceeds the heat loss of the steady 
operation. To cover the subject completely we will 
also discuss the heat loss in steady state.

2.1 Steady state
In steady state heat conduction occurring in the 
outside of the insulated pipes is described by 
equation
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where r1 is internal diameter; r2 is the external radius; 
T1 is the temperature on the internal surface of the 
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pipe wall; T2 is the temperature on the external 
surface of the pipe wall. If radius r2 approaches 
infinity it can be proved that no heat flux takes place. 
This means that in the case of a heat source placed in 
infinite space such as thermal water producing well 
the temperature of the space reaches that of the 
producing pipe after infinite operation and the 
gradient of the temperature field becomes zero at the 
external radius of the producing pipe. Heat flux 
stops. The heat loss of the producing pipe cannot be 
modelled for steady state in theory only through 
approximations.

Fig. 1: Temperature relations in the geothermal wells 
and their environment

2.2 Unsteady state

2.2.1 Determining the temperature field around a 
circular cylinder in infinite space
Using circular symmetrical heat conduction we have 
modelled the heat loss of district heating pipes laid 
horizontally to the surface of the earth and of vertical 
geothermal wells.

This chapter will present how to determine 
the temperature field and the heat flux in any x 
section in the figure of the geothermal well. In that 

cross section heat flux also means heat loss. We will 
not deal with integrating the heat flux for the entire 
length of the pipe. To solve the differential equation 
for heat conduction we used the method of Laplace 
transformation. This subject is dealt with in a large 
number of specialist books that we could not process. 
Our investigations are based on the works of Carslaw 
and Jaeger. After this we will present the partly 
analytical, partly numerical procedure developed by 
Garbai, which is based on the theory of heat flow 
equations [2]. We have used Huber’s [5] works as 
well, dealing with the numerical solution of Volterra 
integral equation.

It was assumed that the initial temperature 
distribution around the heat source (pipe) is zero in 
space. At r = r0 spot on the edge of the pipe at • = 0 
moment the temperature changes to T = T0, 
launching the heat conduction process.  The Laplace 
transformed form of the heat conduction equation in 
circular symmetrical heat conduction is as follows:
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If ∞→r and sT0=Θ , r = r0, the solution is:
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By using the inversion thesis according to Carslaw 
and Jaeger [11]:
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where κλµ = , and K0 is a modified Bessel 
function of the second kind, zero order.
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The asymptotic analysis of the Bessel functions (3) is 
used for small time units in the Laplace transformed 
form of the solution:
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The re-transformed form of which is:
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Surface heat flux density is:
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if 2
0rT τκ ⋅= , then heat flux for low T values
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for high T values
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The constant value of Euler in formula (10) 
is ...57722,0=γ Its numerical values are included in 
table (8), compiled by Jaeger and Clarke [11].

In the case of ∞→T heat loss approaches 0.

2.2.2 Determining heat loss by using the theory of 
heat flux equations
In the course of our work we will show how heat loss 
can be calculated based on measurements. The 
investigation of this problem was first mentioned in 
bibliography [1], [2] and [3]. We developed so-called 
heat flow equations that provide a theoretical 
opportunity to determine the heat flux around the 
pipe on r radius in circular symmetrical heat 
conduction if the time-based change of temperature 
(ϑ ) can be measured on a r0 radius. The following 
results were obtained:

I. If r > r0 heat flux density can be determined as a 
convolution integral:
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J0 and Y0 indicate Bessel functions of the first kind, 
zero order, while J1 and Y1 indicate Bessel of the first 
and second kind, first order.

II. If r < r0 heat flux density can be determined by the 
following convolution integral equation of the first 
order:
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III. x = x0, then:
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These expressions provide a mathematically exact 
solution to define heat flux density. Their use in 
practice, however, is hindered by serious computer 
technology problems. In the following chapter we 
will present a new integral equation to investigate the 
problem and to facilitate practical usage.

2.2.3 Determining the heat flux density on the 
outside of the circular cylinder using Garbai’s 
integral equation
In bibliography [1] Garbai showed that applying the 
method of Laplace transformation in transient heat 
conduction around a long circular cylinder at the 
initial condition of 0 the following integral 
correlation can be set down between temperature and 
heat flux density:
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In the correlation ),( 0 trϑ is the temperature on the 
circle of r0 radius around the cylinder as function of t 
time, while ),( trj is the heat flux density on the 
circle of r0 radius around the cylinder as function of t 
time. K is the heat conduction factor of the substance 
surrounding the cylinder, • the diffusivity factor. 
(r,r0) are higher than the radius of the cylinder but 
otherwise can be any number.

Determining heat flux density means that 
assuming temperature ),( 0 trϑ as known function 

),( trj needs to be defined from correlation (11). In 
terms of mathematics, to determine the heat flux 
densities is the equivalent of solving a convolution 
integral equation of the first order. Here we must 
address the following difficulties:

1. So far in our investigations exact solutions for 
correlation (10) were only obtained for r > r0 because 
the nucleus of the equation disappears for 

rat −→ 0 therefore the equation cannot be returned 

to the integral equation of second order, resolvable 
by the Neumann series.

2. Theoretical function ),( 0 trϑ is unknown in 
practice. Temperature occurring at point r0 was 
determined through measurements at various tk times, 
which produced a set of measurement 
results ( ){ }ktr ,0ϑ (k=1,2,… n) and heat flux density 
can only be determined using them. For simplicity’s 
sake we assume that measured temperatures are 
equidistically given, i.e. tk+1 – tk = T = constant.

The above shows that a numerical method should be 
used to investigate integral equation (11).

In the following section Huber’s [5] method 
will be used provided r ƒ r0. If value T is low, the 
temperature and heat flux densities will be 
approached by continuous functions linear by 
sections as follows:
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if kTtTk ≤≤− )1( , where k = 1,2,… n. 

In the equation kϑ means the temperatures measured 
at point of time kT and j means the approaching 
markings of prevalent heat flux densities which 
should be determined from equation (11). n is the 
number of measured data. It is obvious 
that 000 == ϑj .

In technical practice transients are followed 
by a steady state and the temperature thus takes on a 
steady end value. We can therefore assume that series 

kϑ is limited if ∞→n (i.e. if ∞→k ).

2.2.4 Approach solution of the task by continuous 
functions linear by sections 
Introducing 
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equation (11) is as follows:
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Substituting expression (12) in equation (14) we find 
that at points of time t = KT the following correlation 
exists:
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where k = 1,2,… n. Calculating integrals in equation 
(15) the following recursive equation system is 
obtained:
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k = 1,2,…,n.

In correlation (16) E1, E2 mark the 
exponential integrals.

The approximate value of heat flux density 
can be determined from equation (16) step by step 
and in the case of ∞→n heat flux density can be 
calculated for the discretionary positive integral of T.

After determining j1, j2, …, jk-1 and marking 
the expression by F(k) on the right hand side of 
equation (16) we find that
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The obtained recursion can be numerically evaluated 
by computer. There is an oscillation of results if from 
a certain k = k0 value

),sgn()sgn( 1 kklkk jjjj −−=− +− ha k ƒ k0.

If oscillation occurs it shows that the used linear 
approach was not exact. In paper [5] Huber used an 
elemental geometrical method to show that the 
oscillation perceived at the approximation of Volterra 
integral equations can be addressed and thus a better 
approach is obtained for the solution. The correction 
in the investigation of heat flux densities can be 
carried out as follows:

Let’s introduce the following markings:

*
kj - better approach of heat flux density (corrected 

value),

kk jj , - auxiliary volumes calculated from heat flux 
densities.

Then:
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6
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Substituting this into the place of jl in equation (16) 
we determine values 2j and 3j for k = 2 and k = 3 
with which:

,
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Now substituting j1 and j2 with corrected values *
1j

and *
2j in equation (17) we determine auxiliary 

values 3j and 4j for k = 3 and k = 4 with which:
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= (20)

Continuing the process the corrected values of heat 
flux density can be determined for any k. In the event 
the curve of the theoretical heat flux density is not 
too high, the method is capable of eliminating the 
possible oscillation. In rare cases it is sometimes 
necessary to repeat the correction process (see Huber 
[5].

The approach method can be used if r ƒ r0. It 
can be proven that integral equation (11) has no 
solution for r < r0.

3 Conclusions, summary
The use of renewable energy plays an ever increasing 
role in energy supply. One way renewables can be 
used is to extract the heat of the Earth from the depth 
of the Earth by geothermal wells. The extracted 
geothermal heat can be used for heat pumps and 
district heating. In energy supply the energy analysis 
of geothermal energy usage and the operation of 
district heating is an important issue. The core task of 
energy analysis is to determine heat loss. In unsteady
state heat loss may be the multiple of heat loss in 
steady state. Our paper presented the classical 
methods of calculating the heat loss around heat 
transport pipes for unsteady heat conduction. Based 
on Carslaw and Jaeger we presented the calculation 
methods for the temperature fields and heat losses 
around district heating pipes laid horizontally 
underground and geothermal wells. We described the 
heat loss calculation method based on heat flow 
equations developed by Garbai and the numerical 
solutions for the integral equation. Irrespective of the 
initial and peripheral conditions, this process, using 
the presented numerical solution, is able to determine 
with great accuracy the heat loss of the heat 
transporting pipe from the unsteady temperatures 
measured around the pipe in the given cross section. 
The presented process is based on Huber’s method 
[5].
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