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Abstract: - In this article constrained recovery in a thick-walled shape memory alloy (SMA) ring with a rectangular 
cross section is modeled using the theory of generalized plasticity. As a mechanical obstacle that delays free recovery 
in a SMA ring, a steel ring is used. The result of constrained recovery is generation of high stresses in both rings. All 
equations are written in a closed form in terms of infinite series. Theoretical results are compared with experimental 
results and good agreement is found when SMA rings are in the domain of recoverable strains. 
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1   Introduction 
Shape memory alloys (SMA) have an intrinsic capacity 
to return to a previously defined shape by increasing the 
alloy’s temperature. This effect arises from reversible 
and rate-independent martensitic transformation and 
resulting changes of crystal structure of the solid 
phases of the material. A low-temperature phase is 
called martensite and a high one is austenite. Large 
residual strains of even 10% can be recovered in this 
way and the process is often refered as free recovery. 
The return to the original shape begins at a 
temperature called austenite start temperature AS, and 
completes at the austenite finish temperature Af. If the 
free recovery is hampered by an external obstacle 
before temperature Af is reached, the process is called 
constrained recovery and large stresses, can be 
generated in SMA elements. This property makes 
SMA ideally suited for use as fasteners, seals, 
connectors and clamps [1,2]. 
     The principal aim of the present paper is to develop 
a phenomenological model of the biaxial constrained 
recovery in SMA rings, using the generalized 
plasticity theory [3-6]. Available publications on the 
process of constrained recovery are mostly limited 
only to uniaxial examples [7-14] which is unusual 
because some of the most successful applications of 
the SMA to date are tube couplings [15]. To the 
authors’ knowledge, a mathematical model of biaxial 
constrained recovery in SMA rings is still missing. 
     In our study, a ring made of an ordinary steel material 
is used as a mechanical obstacle which delays free 
recovery in an Ni48Ti38Nb14 SMA ring. Theoretical 
results are compared with experimental findings. Six 
commercial SMA rings were subjected to constrained 

recovery and one SMA ring was heated without a 
mechanical obstacle (free recovery) in order to get the 
data for parameters α and λM, which are needed in the 
phenomenological model. 
 

 

2   The process of constrained recovery 
The entire process of constrained recovery can be 
represented in six steps: (1) An SMA ring is cooled 
from austenite to multi-variant martensite at zero 
stress. (2) The SMA ring is widened in a martensitic 
region (stress-induced or oriented martensite) at a 
constant temperature. (3) The SMA ring and ordinary 
steel ring are then heated, and until temperature AS is 
reached both elements extend. (4) At temperature AS 
the SMA ring starts to contract, while the ordinary 
ring still extends until at temperature TC both elements 
touch each other and the process of constrained 
recovery in the SMA ring begins. (5) Above 
temperature TC, retransformation to austenite is 
constrained and continues until temperature TSE at 
which the retransformation in the SMA ring is 
completed. The stresses in the SMA ring increase, 
therefore temperature TSE is considerably higher than 
Af. (6) Both rings are cooled down to the end 
temperature TEND, which can be equal to the ambient 
temperature T0, and are still in contact. Since 
temperature MS(σe) is lower than T0, the 
transformation from austenite to martensite and 
consequently relaxation of stresses in the SMA ring 
does not begin. 
     The first two steps will not be dealt with here, 
since commercial Ni48Ti38Nb14 SMA rings in the 
widened ‘ready to use’ martensitic state are available 
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from “Intrinsic Devices Inc.” The analysis of the third 
and fourth step is simple and will also be ommited 
because of the lack of the space. It can be found 

elsewhere [16]. The geomety of both rings in different 
temperature regions is shown in Fig. 1. 

 

 
Fig. 1. Geometry of both rings at different temperatures: (a) Before stretching of the SMA ring in martensitic state at 
constant temperature inner and outer radius are a0 and b0. (b) Geometry of both rings at ambient temperature T0 after 

stretching and unloading of the SMA ring. The SMA ring is in martensitic and widened state a1 > d0 > a0. (c) At temperature 
TC the rings touch each other. (d) In the SMA ring transformation to austenite is finished at temperature TSE. Large stresses 

occur in both rings. (e) Rings are cooled down to the end temperature TEND, which can be equal to the temperature T0. 
 
 

3   Modelling of constrained recovery 
In a two phase system (martensite and austenite), it 
can be assumed that the only internal variable is the 
fraction of mass occupied by one of the phases. In 
SMA models this variable is usually the mass fraction 
of martensite ξ, with ξ = 0 denoting all austenite and ξ 
= 1 all martensite. A single internal variable model is 
suitable for modelling constrained recovery since 
there is no conversion between martensite variants. In 
the region where phase transformation from 
martensite to austenite may take place a stress 
decrease at constant temperature, a temperature 
increase at constant stress or a proper combination of 
these actions should occur. Using the generalized 
plasticity theory, the linear flow rule can be written: 

( ) ( )
( ) ( )

( )0

;
;

e f

f S

r T C T A
r T r

C A A

σ
ξ ξ

− −
=

−

 (1)  

where r is the radius of the SMA ring, ξ0 is initial mass 
fraction of the martensite at the beginnig of the phase 
transformation, σe is the effective stress in the SMA ring 
and C is stress rate. In the case of constrained recovery 
in a SMA ring only two components of a stress tensor 

are not equal to zero: normal radial stress σr and 
normal circular stress σϕ. If σϕ ≥ 0 and σr ≤ 0, the 
effective stress can be defined in the next form: 

( )e r rϕ ϕσ σ σ α σ σ= − + +  (2)  

where α is the measure of unequal response in tension 
and compression and should be determined 
experimentally. The special case α = 0 corresponds to 
equal response; the effective stress σe is then of Tresca 
type. The strain tensor εij in SMA can be divided in 
two parts: 

( ; ) ( )el iel

ij ij ij ijTε ε σ ε ξ= +  (3)  

where el

ijε  is elastic part and iel

ijε  inelastic part of the 

strain tensor. Recoverable strains during martensite 
phase transformation can be described by the inelastic 
strain tensor: 

iel e
ij M

ij

σ
ε λ ξ

σ
∂

=
∂

 (4)  

where λM is a constant which must be determined 
experimentally. In steel ring are assumed elastic strains 
during the whole process. The contact temperature TC 
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can be calculated from the condition of equal radii aC and dC, Fig. 1c: 

( ) ( ) ( ) ( )
( ) ( ) ( )
0 0 0 0 0

0 0 0

1 1 1

1

st S f S M f

C

S st f S M

T d T a A A A a
T

a d A A a

α α λ α

α α λ α

− − + − − +  =
− − − +

 (5)  

with αst and αS linear thermal expansion coefficients of 
the steel and SMA ring respectively. >From the 
temperature TC onwards the process of constrained 
recovery in the SMA ring starts and will be described 
here more in detail. 
 
 
3.1   Temperature region TC ≤≤≤≤ T ≤≤≤≤ TSE 
During the process of constrained recovery the relation 
between radial and circular strain, displacement u and 
stresses in the SMA ring can be written from (2-4): 
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with ES and νS Young’s modulus and Poisson’s ratio 
of the SMA ring respectively. It must be noted that 

elastic stresses el

rσ  and el

ϕσ  are not true stresses (σr 

and σϕ are true stresses) in the SMA ring. The 
distinction between σel and σ originates from 
theoretical treatment of uniaxial constrained recovery 
proposed by Rudy Stalmans and his colleagues 
[11,12]. Using expressions (1) and (2), equilibrium 
equation r(dσr/dr) = σϕ−σr and after integration with 
respect to temperature, it can be decuced from (6) and 
(7):
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The solution of the above differential equation is: 
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with E1(T) and E2(T) unknown functions that can be 
determined from boundary conditions and I2(r) and I4(r) 

integrals which can be solved, using the theorem of 
Chebyshev, in a closed and infinite form:
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Using the equilibrium equation, circular stress σϕ in the SMA ring can be determined: 
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There are three boundary conditions. The radial stress at 
the outer radius of the SMA ring is zero: σr(b0) = 0. The 
boundary condition of equal inner radius of the SMA 
ring and outer radius of the steel ring, a(T) = d(T), is 
valid during the whole process of constrained 
recovery. In the second boundary condition the 
contact radial stress p0(T) between both rings emerges 
and additional boundary condition is needed: σr(a0) = 
−p0(T). In this way, there are three unknowns E1(T), 
E2(T) and p0(T) and three boundary conditions from 
which these unknows can be determined. The 
temperature TSE at which retransformation from 
martensite to austenite during constrained recovery is 
completed can be calculated from the equation (1) and 
the condition ξ(b0;TSE) = 0. When p0(T) is known, the 
stress – strain state in the steel ring can easily be 
determined, since only elastic strains are assumed in it. 
 
 
3.2   Temperature region TSE ≥≥≥≥ T ≥≥≥≥ TEND 
The temperature TSE for a commercial Ni48Ti38Nb14 
SMA ring is usually higher than 100°C. It means that 
the system SMA ring – steel ring must be cooled down 
to be used at temperature TEND, which is usualy room 
temperature. In this temperature region, both rings are 
contracting with decreasing temperature T since 
transformation from martensite to austenite is finished 
and transformation from austenite to martensite in the 
SMA ring has not started yet. Radial and circular strains 
in the SMA ring can be written: 

( ) ( )1
r S SE r S

S

T T
E

ϕε α σ ν σ= − + −  (13)  

( ) ( )1
S SE S r

S

T T
E

ϕ ϕε α σ ν σ= − + −  (14)  

where stresses σr and σϕ are true stresses since there is 
no phase transformation. In the similar way as in the 
previous temperature region it is possible to write 
governing differential equation, but will be ommited 
here because it is more complicated than equation (8) 
and because of the lack of the space. Boundary 
conditions are the same as before. The stress state in 
both rings is very similar as in the previous temperature 
region since linear thermal expansion coefficients of 
both materials αst and αS are similar. Of course, the 
strain state in the rings is not similar at both 
temperatures, since rings contract during cooling from 
TSE to TEND. 
 
 

4   Numerical and experimental results 
The numerical values for SMA material parameters are 
based on values given by the company ‘Intrinsic 
Devices Inc.’ San Francisco. For the sake of simplicity, 
a constant value for Young’s modulus ES was chosen 
for both phases (martensite and austenite). The Young’s 
modulus Est and yield strength for steel were measured 
on the Zwick Z050 tensile test machine and the other 
steel material parameters are taken from materials 
science handbooks. Radii of both rings were measured 
on the DEA (Digital electronic automation) coordinate 
measuring machine (error ±2µm). Input values are 
presented in Table 1: 
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Table 1. Input values for numerical calculation of constrained recovery 
a0 = 9.143 mm b0 = 16.08 mm AS = 50 °C Af = 80 °C 

T0 = TEND = 20 °C αS = 1.1×10-5 K-1 αst = 1.15×10-5 K-1 C = 5.5 MPa/K 

νst = 0.3 νS = 0.3 Est = 195 GPa ES = 30 GPa 

 
One SMA ring (a1 = 9.7015mm and b1 = 16.515mm, 
martensite structure) was heated in teflon oil to 
temperature 89°C for 10 minutes and then cooled down 
to ambient temperature T0 = 20°C. No mechanical 
obstacle (steel ring) was used during this temperature 
cycle (free recovery). The inner and outer radius of 
SMA ring a0 and b0 were measured at T0 (austenite 
structure): a0 = 9.143mm and b0 = 16.08mm. These 
values are used in the model as radii before the 
‘widening’ process. Dimensions of six SMA rings and 
six steel rings, are shown in Table 2: 
 

Table 2. Dimensions of SMA and steel rings 
 a1 [mm] b1 [mm] c0 [mm] d0 [mm] 

1 9.7015 16.514 8.285 9.2035 

2 9.7165 16.5155 7.7205 9.252 

3 9.711 16.516 7.2145 9.302 

4 9.712 16.5145 7.2135 9.2995 

5 9.707 16.515 6.9795 9.3525 

6 9.708 16.5155 6.999 9.4035 

 
The outer radius of the steel ring d0 in Table 2 was 
chosen to contact the SMA ring at different contact 
temperatures TC. The width of all SMA and steel rings 
was the same: 13.75mm. Since biaxial stress state is 
assumed, the width has no influence on results. The 

system SMA ring – steel ring was heated in teflon oil 
few degrees above calculated temperature TSE for 10 
minutes and then cooled down to the end temperature 
which was equal to the ambient temperature: TEND = T0 
= 20°C. The inner diameters of the steel ring 2cend were 
measured then by the DEA coordinate measuring 
machine (error ±2µm) and were also calculated 
numerically, see Table 3. The theoretical radial 

displacement st

theu  at inner radius c0 in Table 3 is 

calculated from expression 0
st the

the endu c c= −  and the 

measured one from expression exp
exp 0
st

endu c c= − . The 

error in Table 3 is calculated using expression 

exp exp100( ) /st st st

theerr u u u= − . Figure 2 presents the 

relationship between the theoretical and experimental 
contact pressures at temperature TEND and the outer radii 
of steel rings d0. The experimental contact pressures 
were not measured but were calculated from the 

measured radial displacements exp
stu  from Table 3. From 

Fig. 2 and Table 3 it can be clearly seen that the 
comparison between theory and experiment shows a 
good agreement for the first four examples when 
stresses are lower. In the model, plastic strains in SMA 
rings are neglected, but at higher stresses this 
assumption is not good enough. 

 
Table 3. Theoretical and experimental values of inner diameter 2c and radial displacements at inner diameter 2ust of steel 

rings 
 TC [°C] 2 the

endc  [mm] exp2 endc  [mm] 2 st

theu  [µm] exp2 stu  [µm] error [%] 

1 76.73 16.538 16.532 -32 -38 -15.8 

2 74.28 15.403 15.403 -38 -38 0 

3 71.58 14.387 14.390 -42 -39 7.7 

4 71.73 14.386 14.385 -41 -42 -2.4 

5 68.84 13.910 13.919 -49 -40 22.5 

6 66.15 13.937 13.954 -61 -44 38.6 
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Fig. 2. Experimental and theoretical values of contact pressure versus outer radius d0 of steel rings 
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