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Abstract: A port-based model for the water flow and level dynamics in open channel systems is derived. It is
structured into dissipative and conservative sub-systems related through a symplectic geometric structure which
expresses instantaneous power conservation. This model is equivalent to the classical Saint-Venant equations
(nonlinear PDEs also called shallow water equations) but trivially exhibits some interesting properties (passivity,
stability, stored energy, entropy production) which may be useful for analysis or control purposes. The use of a
geometric reduction leads to a reduced port-controlled hamiltonian (PCH) system. A Comparison between simu-
lation results and experimental ones , obtained on an experimental micro-channel , demonstrates the effectiveness
of the reduced model.

Key–Words: Irrigation channel, Shallow water equations, Port Hamiltonian system, Stokes-Dirac structure, geo-
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1 Introduction

Usually the dynamics of a single reach is modelled
by a set of non linear hyperbolic partial differential
equations : the Saint-Venant equations [1]. They are
derived from mass and kinetic momentum balances in
an infinitesimal length of the reach. Written in closed
form these equations are rather intricate to analyze,
control or even simulate. Although the model is sup-
posed to express mass and momentum conservation,
it is almost impossible to prove its dynamics stabil-
ity, specially with the nonlinear boundary conditions
introduced by the gates constitutive equations. In the
same way passivity is intuitively obvious but very dif-
ficult to prove even though the model is built upon
conservation of energy and dissipation assumptions.
In this paper, we propose an interesting modelling
alternative to the classical set of partial differential
equations and boundary conditions for reaches of
open-air channels and hydraulic works. It is based
on a modular description of kinetic and potential en-
ergy storage through the hydraulic network and on the
phenomenological laws usually used for energy dis-
sipation within the reaches or in the hydraulic works
(gates). The various ”energy-based” sub-models are
connected through a symplectic differential intercon-
nection structure (the same as the one used for the
Maxwell equations, for instance). This model can be
stated independently of the specific geometry of the
reaches, boundary conditions may be chosen freely (it
is in some sense a-causal) and some of its dynamic

properties are trivial to establish (stability, passivity,
stored energy, dissipation map or entropy production).
Let us notice that contrarily to the work [2], where a
similar approach is developed, our model applies for
the general case of interconnected reaches with bed
frictions and slopes.
We propose also a reduction scheme which preserves
basic energetic properties of the Saint-Venant PDE
model. This scheme is an extension of the mixed finite
element method developed for Maxwell’s equations in
[3] and [4].
The paper is organized as follows. In section 2, we de-
rive the port based model for the shallow water equa-
tions with a suitable choice of energy variables by us-
ing the expression of the total energy of the fluid flow-
ing in the channel to define efforts variables (see [5]
for the principles of port based modelling) . Consti-
tutive relation of the dissipation is defined using the
Manning-Strickler formula.
In section 3, a geometric reduction scheme based on
the mixed finite element method is presented. This
method leads to a reduced Port Hamiltonian system.
It uses different approximation bases (one for each
space of the differential forms) in such a way that the
geometric structure of the model is preserved in the
approximation space.
In section 4, Comparisons between simulations of
the obtained reduced model and experimental results
which are obtained using an experimental micro-
channel are shown. Finally main features and prop-
erties of the method are recalled in the conclusion and
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future works related to passivity based control of the
reduced port hamiltonian model are presented.

2 The Port-based modelling

2.1 Shallow water equations

Consider a rectangular open channel with slope I ,
length L and width B and delimited by upstream and
downstream gates. The flow and level dynamics of
water in this channel is modelled by Shallow water
equations which are derived from conservation laws
of mass and momentum using some assumptions on
the flow. First, we suppose that the slope is small and
constant, to be able to approximate sin(I) ' I , The
length is sufficiently long compared to the height of
water level, the pressure repartition is supposed hy-
drostatic and the fluid is supposed to be incompress-
ible (ρ = cst), we neglect also the internal viscosity
effects. Equations (1) give the one- dimensional case.

∂h

∂t
= − 1

B

∂Q

∂x

∂Q

∂t
= − 1

B

∂(Q2/h)
∂x

− gBh
∂h

∂x
− gBh(J − I)

(1)
with h(x, t) the height water level, Q(x, t) the

water flow, g the acceleration of gravity and J(Q,h)
the friction slope which can be evaluated using the
Manning-Strickler formula [1]:

J(Q,h) =
Q|Q|

K2(Bh)2( Bh
2h+B )

4
3

(2)

with K the Manning-Strickler parameter.

2.2 Port-based model of shallow water equa-
tions

Since the shallow water equations are derived from the
mass and kinetic momentum balances, we consider an
elementary volume (3) and a momentum density (4) as
energy (state) variables. they are 1-differential forms
on the spatial domain Z = [0, L].

q(x, t) = Bh(x, t)dx ∈ Ω1(Z) (3)

p(x, t) = ρv(x, t)dx ∈ Ω1(Z) (4)

v(x, t) is the water velocity and ρ the mass density of
water.
The energy densityH of the fluid given in equation (5)
is obtained by integrating its potential and kinetic en-
ergies within an elementary column of fluid. Then the

total energy of the fluid H is obtained by integrating
this energy density along the spatial domain Z.

H(t) =
∫ L

0
H(x, t) (5)

=
1
2

∫ L

0
(ρgBh2 − 2ρBIhgx + ρBhv2)dx

From the expression of the energy of the fluid,
we define distributed efforts variables (co-energy vari-
ables), calculated as a first order derivatives of energy
density relatively to energy variables (called also vari-
ational derivatives):

eq(x, t) := δqH =
1
2
ρv2(x, t) + ρg(h(x, t)− Ix)

ep(x, t) := δpH = Bh(x, t)v(x, t) (6)

These efforts are functions on the spatial domains
(called 0-differential forms Ω0(Z)). The first effort
(eq(x, t)) is generally called hydrodynamic pressure
and the second (ep(x, t)) represents the flow of water
in the channel.
Using the port variables defined above, we can write a
canonical coupling of the two energy domains (kinetic
and potential) by the mean of the canonical symplectic
structure [5].[

−∂q
∂t

−∂p
∂t

]
=

[
0 d
d 0

] [
δqH
δpH

]
(7)


e0
∂(t)

eL
∂ (t)

f0
∂ (t)

fL
∂ (t)

 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




δqH|x=0

δqH|x=L

δpH|x=0

δpH|x=L


(8)

The energy balance in absence of dissipation is:

dH

dt
=

∫
∂Z

e∂ ∧ f∂ (9)

And the instantaneous power conservation may be
written as the condition:∫

Z
[eq ∧ fq + ep ∧ fp] +

∫
∂Z

e∂ ∧ f∂ = 0 (10)

In the Saint-venant model, the fluid viscosity is ne-
glected and the frictions with the banks and the water
bed are modelled by the empirical Manning-Strickler
formula [1]. These friction forces may be viewed as
losses in the momentum balance equation and thus as
a dissipative flow:

fd = ρgJ(Q,h)dx ∈ Ω1(Z) (11)
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The empirical expression of the Manning-Strickler
formula allows to define this flow as:

fd = Gd ∧ ep (12)

where Gd ∈ Ω1(Z) is the lineic distributed conduc-
tance along the spatial domain Z:

Gd =
ρg|Q|

K2(Bh)2( Bh
2h+B )

4
3

dx (13)

The dissipated flow may be easily withdrawn
from the momentum balance equation and incorpo-
rated in the whole model. One obtains:[

−∂q
∂t

−∂p
∂t

]
=

[
0 d
d 0

] [
δqH
δpH

]
+

[
0
fd

]
(14)

Finally the canonical structure defined by (14) and
(8) with constitutive relations (3,4,6,12,13) is the port
hamiltonian formulation of the so called shallow wa-
ter equations. This formulation of the the shallow wa-
ter equations is the same used for many distributed
parameter system (e.g. Maxwell’s equations, wave
equations ...). The energy-balance equation becomes:

dH

dt
=

∫
∂Z

e∂ ∧ f∂ −
∫

∂Z
ep ∧ fd (15)

Since the kinetic energy of the fluid is non-negative
and the potential energy is bounded from below, the
total energy of the fluid is bounded from below.
Thus energy-balance equation (15) shows that the port
hamiltonian system (14) (8) is passive from the input
e∂ to the output f∂ and inversely .

3 Geometric Reduction Scheme

Among the reduction schemes for the Saint-Venant
model, we may distinguish between total discretiza-
tion schemes which lead to discrete time models, we
cite the Preissmann implicit finite difference scheme
and partial (spatial) discretization schemes (usually
using pseudo-spectral methods) leading to continu-
ous time but finite-dimensional approximations like
orthogonal collocation. the orthogonal collocation
method has been frequently used for simulation and to
design simplified ”control” models (see [9] for input-
output linearization, [10] for backstepping or [11] for
robust optimal control). Unfortunately, this approxi-
mation is also difficult to implement : the number and
location of collocation points greatly affect numeri-
cal and dynamical stability. Moreover, the collocation
scheme does not preserve dynamical stability of the

actual PDE model, nor its energetic properties (energy
conservation, dissipativeness).

These are the reasons why we defined a reduction
scheme which preserves basic energetic properties of
the Saint-Venant PDE model, that is the potential and
kinetic energy stored in the channel, the dissipation
inequality and the canonical coupling between kinetic
and potential energies. This scheme is an exten-
sion of mixed finite element method developped for
Maxwell’s equations [3]. It is here applied to the port-
based model and leads to a finite dimensional approx-
imation with exactly the same sub-models structure :
each finite element is modelled as the interconnection
of a conservative subsystem with a dissipative element
through an interconnection structure which satisfies
instantaneous power conservation and allows power
exchanges through the boundaries of the element. The
mixed finite element method takes into account the
geometrical variables nature: in our case 0- and 1-
differential forms. We apply it in such a way that the
reduced Hamiltonian and the power-conserving inter-
connection structure remain preserved. This allows us
to derive all the needed constitutive equations of the
reduced system.

3.1 Basic principle of the reduction method

We present the principal stages of the used reduction
method.First, spatial subdivision into elements (cells)
of the total spatial domain Z of the channel is defined.
On a generic element Zab = [a, b]. The flow and en-
ergy variables, which are 1-differential forms on Zab,
are approximated as follows:

q(x, t) = qab(t) wab(x)
p(x, t) = pab(t) wab(x)

fq(x, t) = −∂q
∂t = fab

q (t) wab(x)
fp(x, t) = −∂p

∂t = fab
p (t) wab(x)

(16)

where wab(x) is a 1-differential form on Zab satisfy-
ing: ∫

Zab
wab(x) = 1 (17)

Under this condition, the total volume and momentum
on Zab are equal,respectively, to the reduced variables
qab(t) and pab(t).

For intensive quantitities, or 0-differential forms
(functions) on Zab, we use a two-dimensional spatial
approximation base. This means that we are using lin-
ear elements and approximations defined by:

eq(x, t) = ea
q(t) wa(x) + eb

q(t) wb(x)
ep(x, t) = ea

p(t) wa(x) + eb
p(t) wb(x)

(18)
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where wa(x) and wb(x) are 0-differential forms on
Zab. In order to equal the boundary values (at x = a
and x = b) and the reduced variables ea

q , e
b
q, e

a
p, e

b
p, the

0-forms wa(x) and wb(x) should satisfy the following
conditions:

wa(a) = 1 wb(a) = 0 wa(b) = 0 wb(b) = 1
(19)

approximated efforts and flows connected, at any
time t and for all spatial coordinate x, one gets com-
patibility conditions between the two approximation
bases:

wab(x) = dwb(x) (20)
wab(x) = −dwa(x) (21)

and the constitutive relations between reduced vari-
ables:

fab
q (t) = −ea

q(t) + eb
q(t)

fab
p (t) = −ea

q(t) + eb
q(t)

(22)

The relations between reduced and a boundary port
variables in (8) may be summarized:

ea
∂(t)

eb
∂(t)

fa
∂ (t)

f b
∂(t)

fab
q (t)

fab
p (t)


=



−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1
0 0 −1 1
−1 1 0 0




ea
q(t)

eb
q(t)

ea
p(t)

ea
p(t)


(23)

As it can be noticed, this constitutive equation (like
the infinite dimensional Dirac structure) is not injec-
tive. In order to define an acausal interconnection
structure between port variables, we must define inter-
nal effort variables. These will be conjugate variables
of the flow variables fab

q (t) and fab
p (t), using the ap-

proximation schemes (16,18) and the power product
given in (10) on the spatial domain Zab. Doing so,
one obtains as internal effort variables :

eab
q (t) = [αabe

a
q(t) + (1− αab)eb

q(t)]
eab
p (t) = [(1− αab)ea

p(t) + αabe
b
p(t)]

(24)

With
αab =

∫
Zab

wa(x)wab(x) (25)

Instantaneous power conservation is then written
with the help of the following new non degenerated
power product:

eab
q fab

q + eab
p fab

p − ea
∂fa

∂ + eb
∂f b

∂ = 0 (26)

We obtain the finite-dimensional Dirac structure
defined by the following constitutive relation between
reduced variables:

Eabe
ab(t) + Fabf

ab(t) = 0 (27)

where fab := [fab
q fab

p fa
∂ f b

∂ ]T and eab :=
[eab

q eab
p ea

∂eb
∂ ]T are the vectors of conjugated flow and

effort variables, and:

Eab :=


−1 0 −αab −(1− αab)
0 −1 0 0
0 0 0 0
0 0 −1 1



Fab :=


0 0 0 0
0 0 (1− αab) αab

1 0 1 −1
0 1 0 0


(28)

Using the base for the 1-forms, we write a reduced
hamiltonian of (5) depending on the reduced variables
qab(t) and pab(t):

H̄(t) =
1
2

qab(t)2

Cab
− ρgIKabq

ab(t) +
1
2

qab(t)pab(t)2

Lab
(29)

where

C−1
ab =

∫
Zab

∗(wab(x)

( B
ρg

)
)wab(x)

L−1
ab =

∫
Zab

(∗(wab(x))2

ρ )wab(x)
Kab =

∫
Zab

xwab(x)

(30)

Cab is related to the accumulation of potential energy
due to the water level in the element Zab (hydraulic
capacitance), Lab is related to the accumulation of ki-
netic energy (hydraulic inductance) in the same ele-
ment and Kab is related to the accumulation of poten-
tial energy resulting from the channel slope1. From
the expression of the reduced hamiltonian, we may de-
fine effort variables as in any finite-dimensional port
hamiltonian system (see [13]). We obtain:

eab
q (t) =

∂H̄

∂qab
=

qab

Cab
− ρgIKab +

pab(t)2

2Lab
(31)

eab
p (t) =

∂H̄

∂pab
=

qab(t)pab(t)
Lab

(32)

In the same way,we define a reduced dissipative char-
acteristic for the power dissipated by friction:

Pd =
∫
Zab

ep(x, t) ∧ fd(x, t)

=
∫
Zab

ep(x, t) ∧ (Gd(q, p) ∧ ep(x, t))

' Gab
d (qab, pab) eab

p (t)2 (33)
1In these definitions we use the Hodge Star operator which

allows us to define functions from a 1-forms and reciprocally
by a duality relation (see [3]). In our case we use the rela-
tions ∗(q(x, t) = Bh(x, t) and ∗(p(x, t)) = ρv(x, t) for the
state variables and ∗(qab(t) wab(x)) = qab(t) ∗ wab(x) and
∗(pab(t) wab(x)) = pab(t) ∗wab(x) for their approximations.
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where Gab
d is the finite dimensional reduced conduc-

tance:

Gab
d = ∗Ḡ(qab, pab)

∫
Zab

(∗wab(x))4dx

[
∫
Zab

(∗wab(x))2wab(x)]2
(34)

where Ḡ(qab, pab) is derived from the approximation
of the distributed conductance (using the chosen ap-
proximation base for 1-forms):

Ḡ = g
qab(t)pab(t)

K2qab(t)2

(
B + 2

B qab(t) ∗ wab(x)
qab(t) ∗ wab(x)

) 4
3

dx

We obtain then the reduced dissipative flow

fab
d = Gab

d (qab, pab)eab
p (t) (35)

This dissipative flow is incorporated into the reduced
model by mean of a junction expressing the conserva-
tion of the total momentum flux (in the sense of par-
allel electric junctions):

ṗab(t) + fab
d (t) + fab

p (t) = 0 (36)

We have obtained a reduced PCH model which
apply for any approximation bases choice. Making a
particular choice of wab(x) will allow us to derive the
values of all physical parameters in the model. For
instance, the choice:

wab(x) = λdx (37)

where λ is constant along Zab, this leads to functions
wa(x) = λ(b − x) and wb = λ(x − a). Hence
with conditions (19), we obtain wab(x) = 1

(b−a)dx,

wa(x) = (b−x)
(b−a) and wb(x) = (x−a)

(b−a) . The numerical
values of the reduced elements are then:

αab = 1
2 , Cab = B

ρg (b− a), Lab = ρ(b− a)2

Kab = b+a
2

Gab
d = gpab(t)

K2qab(t)

(
B2(b−a)+2qab(t)

Bqab(t)

) 4
3

(b− a)

(38)
Finally the finite Dirac structure (27,28) with the con-
stitutive relations (29,31,32,36,38) defines a reduced
implicit port controlled hamiltonian system equivalent
to the Saint-Venant (shallow water).

4 Simulation and Experimental Re-
sults

We first consider a scenario in which the downstream
gate remains with a constant opening θdown(t) =

0.06m and in which the upstream gate is progres-
sively opened with the help of a second order response
(which is used in practice to model the dynamic of
the motor driving the gate) from an initial position
θup(t) = 0.03m to a final one θup(t) = 0.08m. Sim-
ulation and experimental results of the cited scenario
are presented in (Fig.1)

Figure 1: Upstream and Downstream heights of the
water level response to progressive opening of up-
stream gate

We consider a second scenario where the up-
stream gate is closed progressively as in the first one
from an initial position θup(t) = 0.08m to a final one
θup(t) = 0.06m. The downstream gate remains with
a constant opening θdown(t) = 0.06m. The results are
presented in (Fig.2).

Figure 2: Upstream and Downstream heights of the
water level response to progressive closing of up-
stream gate

From the results of this smooth scenarios we can
extract some intrinsic properties of the flow dynam-
ics like the flowing time from upstream to down-
stream, and conversely from downstream to upstream.
These two different flowing times are dependent on
the wave propagation velocity and the mean fluid ve-
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locity across the channel. They have been proven to
be very accurate approximations of the measured val-
ues.

5 Conclusions and Future Works
5.1 Conclusions

In this paper, a port-based model of shallow water
equations is derived which exhibits some interesting
features. It is based on a description of the power
transfers within the system and through its boundary
which are explicitly expressed with the help of power-
conserving geometric structure (called Stokes-Dirac
structure). A geometric reduction scheme for shallow
water equations is developed. This reduction scheme
leads to a reduced port-controlled hamiltonian (PCH)
system by defining a reduced elements with their re-
duced constitutive equations. Comparisons between
simulations of the reduced model and experimental re-
sults, obtained using the experimental micro-channel,
are presented and show that the reduced model recov-
ers satisfactorily the dynamics of the micro-channel.

5.2 Future Works

We will develop the work presented here into two di-
rections. The first one concerns generalizations and
improvements of the geometric reduction scheme pre-
sented here. The second one concerns the use of the
PCH reduced model as a control model for regulation
using passivity based approaches.

References:

[1] V.T. Chow, Open channel hydraulics, Mc Graw
Hill, New-York, 1985.

[2] R.Pasumarthy and A.J.van der Schaft, ”A port-
Hamiltonian approach on modeling and inter-
connections of canal systems”, in Proceeding of
the Mathematical Theory of Networks and Sys-
tems Conference MTNS’06, Kyoto, Japan, 2006.

[3] A. Bossavit, Differential forms and the compu-
tation of fields and forces in electromagnetism,
European Journal of Mechanics, B/Fluids, vol.
10, n5, 1991, pp 474-488.

[4] A.Bossavit, Computational Electromagnetisme,
Academic Press, 1998.

[5] A. van der Schaft and B. Maschke, Hamilto-
nian formulation of distributed-parameter sys-

tems with boundary energy flow, Journal of Ge-
ometry and Physics, vol. 42, 2002, pp 166-194.

[6] T.J.Courant, Dirac manifolds, Trans. American
Math.Soc.,319, 1990, pp 631-661.

[7] A.J. van der Schaft G. Golo, V. Talasila and
B. Maschke, Hamiltonian discretization of the
the Telegrapher’s equation, Automatica, 2004.

[8] J. A. Cunge, Jr. F. M. Holloy and A. Ver-
wey, Practical aspects of computational river
hydraulics, Oitman, London, 1980.

[9] J.F. Dulhoste, G. Besançon and D. Georges,
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