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Abstract: A model for Chemical Vapor Infiltration is analyzed and developed. Consider a cylindrical pore with a
reacting and carrier gas flowing in from the left. The gas reacts with the interior of the pore and the result is a solid
matrix. The model assumes that the flux due to binary diffusion is negligible. The model also assumes that the
reactions are first order.
There is little data containing gas-solid reaction rates between hydrocarbons and graphite. The inverse problem
includes comparing the model to experimental data and using optimal control to estimate gas-solid reaction rates.
Numerically, we look at how the void and the concentration of reacting gas change as a function of space and time.
We use data on how the void changes with time to estimate the flux of the reactant out of the preform.
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1 Introduction
1.1 Overview

Consider a porous preform, (e.g. fibers, or parti-
cles) and a vapor flowing into the preform on one side.
The fluid consists of a carrier gas that is non-reacting
and a reactant that bonds with the interior surfaces of
the preform. The result of the reaction is the depo-
sition of a solid matrix phase that decreases the void
of the preform. The void of the preform may contin-
uously decrease until the void at the inlet is zero and
no more fluid can enter the solid. At this time the
process ends. It is usually desirable that the voids in
the preform are minimized and the solid is uniform
before the process ends. Since Chemical Vapor Infil-
tration (CVI) often takes an extremely long time, it is
also important to choose parameters that achieve the
requisite amount of solid formation in the minimum
amount of time.

The process involves several parameters: temper-
ature, pressure, initial void of the preform, chemical
composition, chemical concentration, etc. An accu-
rate mathematical model is necessary to inexpensively
and effectively optimize the process.

A process is successful if the remaining voids in
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the matrix are within some tolerance. The tolerance
is determined by the application of the material. The
conclusions that follow can be used to choose the val-
ues of the parameters that will yield a successful pro-
cess. Specifically, these results can be used to adjust
the controls on a CVI reactor and produce a successful
product.

In the research presented here, the parameters α2

(proportional to the reaction rate divided by the dif-
fusion rate) and β (proportional to the reaction rate)
are constant during each process. Because they are
assumed to be functions of temperature and pressure,
this corresponds to an isothermal-isobaric process.

There is little data containing gas-solid reaction
rates, k, between hydrocarbons and graphite. We as-
sume that the flux of reactants out of the solid is pro-
portional to the concentration of reactants. However,
the constant of proportionality, A, is not known. The
inverse problem involves comparing the model to ex-
perimental data using optimal control to estimate k
and A.

The formulation yields a coupled system of Par-
tial Differential Equations (PDEs) for the void frac-
tion of the preform and the concentration of the react-
ing gas. Finite Difference Methods are used to give
approximate solutions to the PDEs as a function of
space and time. The approximate solutions of the void
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fraction and the concentration are used to determine
conditions of a successful process and how α2 and A
(proportional to the flux of reactants out of the solid)
effect the process.

1.2 Formulation

A mathematical description of infiltration re-
quires one or more partial differential equations which
describe the evolution of the matrix (i.e., the solid
phase), and at least one additional partial differential
equation for each chemical species in the fluid phase.
For a simple pore structure, the continuity equation
for species i is

−∂(εCi)
∂t

= ∇ ·Ni −
nr∑
r

νirRr (1.2.1)

where t is time, ε is the void fraction of the media,
Ci is the concentration of species i, nr is the number
of the gaseous species, νir is the stoichiometric coef-
ficients for the ith gaseous species in the rth reaction,
and Rr represents the volumetric reaction rate of re-
action r.

The basic partial differential equation(s) which
describe reaction and mass transport in porous me-
dia (i.e., the fluid phase) are well established (Aris
(1975) [3]; Dullien (1979) [4]). The Dusty-Gas model
(see Mason and Malinauskas (1983) [5]) describes
multicomponent diffusion and convection. Neglecting
thermal diffusion, the relationship between the molar
fluxes, Ni, is given by (see Jackson (1977) [6]):

Ni

DKi

+
RT

P

∑
j 6=i

CjNi − CiNj

DMij

= −∇Ci−
CiBe

µDKi

∇P

(1.1.2)

where Be is the permeability of the porous media, µ
is the viscosity of the mixture, and P is the total pres-
sure. DMij and DKi are the effective binary diffu-
sivity for species i and j and the effective Knudsen
diffusivity of species i, respectively.

The change in the solid structure is equivalent to
considering the change in the void fraction, ε (i.e., the
volume fraction of gas inside of the porous solid). The
evolution of ε is given by:

∂ε

∂t
= −uSv(ε) (1.2.3)

where u is the rate at which the solid product grows
(volume/area/time) and Sv(ε) is the surface area per
unit volume of the porous solid.

The simplest formulation for the fluid phase is
obtained by considering one reacting species and no
pressure gradient. That is, we assume i = j and
∇P = 0 in (1.1.2). Thus, for highly diluted reac-
tant systems in one dimension, the Dusty-Gas model
can be simplified to give the following approximate
expression for the flux:

N = −DK
∂Ci

∂Z
(1.2.4)

where C is the concentration of diluted species and Z
is the distance into the preform. The effective diffu-
sivity of the diluted species, D, can be expressed as

D =
ε

θ
DMm [1 + Nk(ε)]

−1 (1.2.5)

where m refers to the bulk species, DMm is the binary
diffusion coefficient for M in m, Nk is the ratio of the
Knudsen diffusion coefficient and DMm, and θ is the
tortuosity factor. For a diffusion-limited process in
one spatial dimension, using Eq. (1.2.4), Eq. (1.2.1)
becomes:

∂(εCi)
∂t

=
∂

∂Z

[
DK

∂C

∂Z

]
− uSv(ε)

VM

(1.2.6)

where VM is the molar volume of the solid prod-
uct. The last term in Eq. (1.2.6)

uSv(ε)
VM

=
nr∑
r

νirRr

describes the rate at which the gas-phase precur-
sor is consumed or created by chemical reactions in-
side of the pores with the assumption that there are no
homogeneous gas-phase reactions.

Are assumption, that there are no gas phase re-
actions is based on the following. If the gas inlet is
a large distant from the sample many gas phase reac-
tions will occur before the gas reaches the first pore.
We assume that the gas that reaches the pore is in equi-
librium with 44 species of hydrocarbons. The reaction
rate of the gas with the surface is taken to be the aver-
age of the reaction rates of 44 gasses.

A specific CVI model requires expressions for u,
Sv, and D. Our objective in this work is to use simple
formulations for each, as a basis for assessing the gen-
eral behavior of infiltration problems. As an example,
consider the formation of carbon matrix composites
using a hydrocarbon in an argon carrier gas, where
the following net reaction occurs:

Proceedings of the 2nd IASME / WSEAS International Conference on Energy & Environment (EE'07), Portoroz, Slovenia, May 15-17, 2007      75



Cm Hn (g)−→ m C(s) + 1
2 n H2(g) (1.2.7)

The form of Eq. (1.2.6) is based on the assump-
tion that the hydrocarbon concentration, Cr, is dilute
(i.e., the reactant concentration is much smaller than
the carrier gas concentration). If the carbon growth
rate is proportional to the precursor concentration,
then:

u = kCr (1.2.8)

where k is the reaction rate constant.
The preforms used for CVI typically have a com-

plex porous structure. However, a cylindrical pore is
often used to formulate simple models. This leads to
the following expression for Sv:

Sv(ε) in terms of ε is given by [1],

Sv(ε) =
2
√

ε0
√

ε

r0
(1.2.9)

where r0 is the initial pore radius and ε0 is the initial
void fraction of the preform.

We neglect the change in the number of molecules
in the gas phase

∂(εCi)
∂t

This is assumed because solids are much denser than
gases, so that the time-scale for changes in the gas
profile is much shorter than the time scale associated
with changes in the solid structure. The temporal
change is given by (1.2.3). For gas-solid reaction pro-
cesses such as CVI, this is sometimes referred to as
the pseudo-steady-state approximation (Chang (1995)
[7]). Transforming ε to η simplifies equation (1.2.10).
Since η is proportional to Sv, it is also possible to view
η as a dimensionless surface area per volume.

Substituting Eqs. (1.2.8) and (1.2.9) into Eqs.
(1.2.3) and (1.2.6) gives the following forms:

∂η

∂t
= −1

2
βc (1.2.10)

∂

∂z

[
η2

θ
[1 + Nk(η)]−1 ∂c

∂z

]
= α2ηc (1.2.11)

where:
η =

√
ε (1.2.12)

c =
Cr

C0
(1.2.13)

z =
Z

L
(1.2.14)

α2 =
2k
√

ε0L
2

VM r0DMm
(1.2.15)

β =
2k
√

ε0C0

r0
= α2 VM C0DMm

L2
(1.2.16)

where L is the thickness of the preform and C0 is the
concentration of the reactant species in the bulk gas-
phase (i.e., outside of the preform). The expression
for α (1.15) is based on the assumption that u is de-
termined by a first order reaction, where k is the rate
constant (i.e., u = kCr). Note that α2 is dimension-
less and that β has units of inverse time.

The parameters α2 and β depend on the three key
process variables: T (temperature), P (pressure), and
C0 (initial concentration). T, P do not appear explic-
itly in Eqs. (1.2.15) and (1.2.16), however, k typically
obeys an Arrhenius-type exponential temperature de-
pendence, and DMm varies with both temperature and
pressure.

The boundary conditions that are most often used
for CVI models are to fix the concentration at the left
surface (the inlet) of the preform at C0:

c(0, t) = 1 (1.2.17)

and to assume that the flux at the right surface
(i.e., at z = 1) is proportional to the concentration:

cz(1, t) = −Ac(1, t) (1.2.18)

where A is the constant of proportionality.
The initial condition is given by:

ε(z, 0) = ε0 (1.2.19)

During CVI, the infiltration kinetics are con-
trolled by diffusion and the deposition reaction. To
achieve relatively uniform infiltration, diffusion must
be fast relative to the deposition rate. This is typically
accomplished by choosing processing conditions that
result in a slow deposition rate, which usually leads
to long infiltration times. Thus, a key processing ob-
jective is to obtain the desired amount of infiltration
in the shortest possible time. The total amount of in-
filtration in the preform is given by integrating over
z:

ε̄(t) =
∫ 1

0
ε(z, t)dz (1.2.20)
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Since it is important to obtain the desired density
(i.e., void fraction), εf , in the shortest possible time,
the optimization problem of interest corresponds to
determining the shortest time where ε(t) = εf , for
values of εf that are significantly smaller than ε0.

1.3 The Equations

If f(η) =
η2

θ
[1 + Nk(η)]−1 then equations

(1.2.10) and (1.2.11) become

∂η(z, t)
∂t

= −β

2
c(z, t) (1.3.1)

∂

∂z

{
f [η(z, t)]

∂c(z, t)
∂z

}
= α2η(z, t)c(z, t) (1.3.2)

We subject (1.3.1) and (1.3.2) to the boundary condi-
tions

c(0, t) = 1 (1.3.3)
∂c

∂z
(1, t) = −Ac(1, t) (1.3.4)

and the initial condition

η(z, 0) = η0 (1.3.5)

Where η0, the initial value of the square root of
the void fraction, is constant in space and

f [η(z, t)] =
η2

θ
[1 + Nk(η)]−1

and
f(η)

η

are both C∞ monotonically increasing functions of η,
and η(z, t) is positive. For a cylindrical pore

θ = 1 and f(η) =
1
3

η3

η + τ

where τ =
1.54 · 10−5T

p
where T and p are tempera-

ture and pressure respectively

Throughout the process the concentration of the
reactants will be held constant on the left-hand surface
of the matrix, i.e. c(0, t) = 1.

∂c

∂z
(1, t)

is proportional to the flux of reactants out of the
porous solid. η2

0 is the initial void of the preform. The
void function, η(z, t) is the square root of the void
fraction of the preform.

2 Computational Analysis
2.1 The Scheme

In the following section we analyze the system
(1.3.1-1.3.5) numerically and compare the results with
the asymptotic solution. We begin by developing a
numerical scheme.

We discretized the spatial equation (1.3.2) by us-
ing a finite central difference approximation and used
equation (1.3.1) to step forward in time with the Euler
Forward Method.

First, consider equation (1.3.2).

Let f(η) =
η2

θ
[1 + Nk(η)]−1 and use the product

rule so that (1.3.2) becomes

f [η(z, t)]
∂2c(z, t)

∂z2
+

∂f [η(z, t)]
∂z

∂c(z, t)
∂z

−α2η(z, t)c(z, t) = 0 (2.1.1)

Since, as ∆z → 0

f(z0, t0)
∂2c(z0, t0)

∂z2
= f(z0, t0)× {

c(z0 + ∆z, t0)− 2c(z0, t0) + c(z0 −∆z, t0)
(∆z)2

}
=

fm
j

cm
j+1 − 2cm

j + cm
j−1

(∆z)2

and

∂f [η(z0, t0)]
∂z

∂c(z0, t0)
∂z

=

f(z0 + ∆z, t0)− f(z0∆z, t0)
2∆z

× {

c(z0 + ∆z, t0)− c(z0 −∆z, t0)
2∆z

}
=

(fm
j+1 − fm

j−1)(c
m
j+1 − cm

j−1)
(2∆z)2

Thus, the equivalent discretized equation is

fm
j

cm
j+1 − 2cm

j + cm
j−1

(∆z)2
+−α2ηm

j cm
j

+
(fm

j+1 − fm
j−1)(c

m
j+1 − cm

j−1)
(2∆z)2

= 0

Rearrangement yields

cm
j+1 = um

j cm
j + vm

j cm
j−1
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where um
j =

4[α2(∆z)2ηm
j + 2fm

j ]
Dm

j

and vm
j =

fm
j+1 − fm

j − fm
j−1

Dm
j

where Dm
j = 4fm

j + fm
j+1 − fm

j−1.
The boundary conditions c(0, t) = 1 and
∂c(1, t)

∂z
= −Ac(1, t) become

cm
0 = 1 and

cm
n − cm

n−1

∆z
= −Acm

n

=⇒ −cm
n−1 + (1 + A∆z)cm

n = 0

Hence the matrix for the system of equations
vm
j cm

j−1 + um
j cm

j − cm
j+1 = 0, for j = 1 to j = n,

is

A =



u1 −1

v2 u2 −1 0

v3 u3 −1

v4 u4 −1

v5 u5 −1

. . .
. . .

. . .

0 vn−1 un−1 −1

−1 1 + A∆z


Let M be the coefficient matrix for the concentra-

tion and v be the right-hand-side. Note that M and v
are both functions of η at the time step m.

Secondly, consider equation (1.3.1),

∂η(z, t)
∂t

= −β

2
c(z, t)

in its discrete form

ηm+1
j = ηm

j − 1
2
βcm

j ∆t

The initial concentration, c0
j can be found by solv-

ing equation (1.3.1) when t=0. Thus, the initial con-
centration is:

Hence the initial concentration c0
j is known. The

initial value of the void function η0 (=η0
j ) is given, we

can compute the void function η1
j at the first time step.

Now the tri-diagonal system, M(η1
j )c(η1

j )=v(η1
j ),

can be solved for the concentration c1
j at the first time

step.
Given the concentration at the first time step, we

can compute the void function at the second time step
and so on...

The method above is the main loop of the pro-
gram. Within that loop we compute the average value
of the void fraction ε(t) and check to see if it is de-
creasing. If it is decreasing then, at some time step, it
will become less than the given tolerance. If the void
fraction is not less than the tolerance and it stops de-
creasing for all times greater than some time step, we
call the process unsuccessful.

The program’s output is c(z, t), η(z, t), and the
final time.

2.2 Optimal Control
Recall that η2(z, t) = ε(z, t) is the void fraction

and

ε̄(t) =
∫ 1

0
ε(z, t)dz

The knowledge of the constant reaction rate
gas-solid k in the equation (1.2.15) and the propor-
tionality coefficient A in the equation (1.2.18) allow
us to solve completely the discretized equations.
However, these parameters are unknown. We will
use the experimental data of the void fraction to
retrieved the parameters k and A. The experimental
data are provided by Huttinger [10]. We denote by
ε̃exp experimental void fraction.

The cost function, J (A, k) : IR −→ IR+, de-
fines the discrepancy between the simulated values
void fraction, ε (x, t), and the corresponding experi-
mental ε̃exp, is defined as follows:

J (A, k)=
1
2

∫ T

0
‖ε− ε̃exp‖2dt

We then defined the optimal control problem as fol-
lows:

Find ε and (k?, A?) such that

J (A?, k?) = inf
A, k

J (A, k) .
(2.2.1)

If J has a minimum then the optimality condition
∇J (A?, k?) = 0 holds. Since the control parame-
ters are restricted to two constants A and k, the finite
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difference will be used to approximate the gradient of
the cost function J as follow

∇AJ =
J (A + ζ, k)− J (A, k)

ζ

∇kJ =
J (A, k + ζ)− J (A, k)

ζ

The exact gradient of the cost function J can be
obtained by using an adjoint equation (see Le Dimet
and Talagrand [9]).

The unconstrained minimization algorithm of
the quasi-Newton limited memory type [8] with
the convergence criterion either on the number of
iterations or the gradient norm of the cost function is
used to determine the optimal parameters A? and k?.

We compared the model with experiments by
Huttinger [10]. First, we compared the model with
the experiment at a pressure P = 12kPa and a
temperature T = 1273K.

Figure 1: Void vs. time at 12kPa

We then used experimental data at higher pres-
sures, P = 15kPa and P = 20kPa Pa shown in
figure 2 and figure 3 respectively.

From the above figures we see that the model
matches the experimental data qualitatively and is
close quantitatively.

Figure 2: Void vs. time at 15kPa

Figure 3: Void vs. time at 20kPa

3 Conclusion
This model assumes simple reaction kinetics.

Specifically, we assume that the molecules in the gas
don’t react with each other gasses and bond to the sur-
face on contact. Since the temperatures and pressures
that promote gas-solid reactions also cause gas-gas
reactions, this assumption is does not fit all process.
However, if the sample is sufficiently far away from
the gas inlet so that gas-gas reactions occur before
the gas reaches the sample, then this model yields a
good approximation to the experiment. The research
presented here accurately models the CVI process for
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some process as a function of time.
Again, if the gas is in the reaction chamber for

some time before it reaches the preform, radicals and
large molecules are form chemical and equilibrium is
established. These large molecules and radicals react
at the pore inlet and in the interior of the pores. In
this case, the deposition profile decreases with pore
depth. With this model it can be shown (see [1]) that
the void increases with space. This process causes the
pore inlet to close before densification is complete or
”choking”.

Some researchers [11] have created a process
where the gas inters the pore before it reaches reaction
temperatures so that the radicals and large molecules
formed inside the pore. This process can be used so
that densification increases with space. This model
does approximate a void that decreases with space.

We plan to model the CVI process considering
the chemistry of the gas and with fewer simplifying
assumptions. This will produce a model that is
accurate for different CVI process in space and time.
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