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Abstract: - In this work masonry, made of clay bricks and mortar joints, has been investigated. In particular the 
study of masonry columns - typical of historical buildings and churches - subject to eccentrical loads has been 
carried out taking into account the sensitivity respect to several geometrical and mechanical parameters of the 
behaviour of this structural element. The difficulty in modelling masonry lies in its heterogeneous character, 
since it is composed by blocks between which mortar joints are laid. Moreover the block stiffness is very higher 
than the mortar one. Here a linear elastic analysis is performed that is significant under service loads. For this 
reason the determination of homogenised elastic properties for in-plane loaded and out-of plane loaded 
masonry walls has, in recent years, been the object of a number of studies [1, 2, 3]. The masonry has been 
identified with a standard elastic continuum by means of a homogenisation method. This method allows to 
determine values of homogenised axial and bending moduli, for different brick pattern, such as to obtain, 
starting from a 3D heterogeneous model a beam homogeneous 1D model that takes into account the effective 
micro-structure of masonry column. 
The 1D masonry column constants are defined as function of geometrical parameters (size of block and mortar 
thickness) and as function of mechanical parameters (Young modulus and Poisson ratio of block and mortar). 
An extensive numerical analysis has been carried out to investigate the capacity of the homogenisation method 
to grasp the effect of geometrical and mechanical parameters in the analysis of masonry columns with equal 
cross section and different textures. The sensitivity of displacement field to masonry texture is investigated on a 
meaningful case such as a masonry column loaded by a horizontal force. 
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1 Introduction 
Bearing masonry columns are structural elements 
present in our historical heritage. This is the reason 
of the interest in their behaviour, also from a 
conservation and restoration point of view. These 
elements generally bear the load induced by floor 
deck, roof and the upper side of masonry wall; in 
few cases these bear the own weight. Many 
researches were carried out following different 
approaches, especially taking into account the no 
tensile resistance of masonry. Anyway a linear 
elastic analysis may be of interest to investigate the 
masonry behaviour under service loads. 
The high number of freedom degrees represents a 
not negligible drawback. Hence numerical models 
are computationally very onerous, this is the reason 
to use continuous models [4, 5, 6, 7]. 
The development of models is strictly connected to 
the typology of masonry structure that must be 
investigated ( columns,  panels, arches and domes) 
and to the definition of the most relevant actions to 

which each masonry member may be assumed to be 
subject. In plane actions [8, 9, 10, 11] - i.e. self-
weight, mutual actions between adjacent walls and 
live loads - may be the most relevant phenomena 
which brought to a series of studies on masonry. 
Hence the wide set of 2D models [12, 13, 14, 15]. 
But also the actions defined as out of plane actions 
are relevant. These actions are related to the effects 
of seismic events and also to wind effect and in 
some case actions due to the connections of the 
vertical members with horizontal members or to the 
connections between orthogonal walls. Furthermore 
- if the actions are out of plane - the model allows to 
define the bending stiffness [16, 17, 18, 19, 20]. 
Here a continuous model based on an 
homogenisation approach is considered. In fact this 
approach links the masonry behaviour on the micro-
level to the macro-level, to take into account global 
and local phenomena of masonry [21, 22, 23, 24]. 
The homogenisation approach starts considering 
mechanical and geometrical properties of single 
masonry constituents (blocks and mortar joints) and 
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identify an elementary cell, which regular repetition 
describe the body as a whole. In this way the field 
problem is led to the unit cell reducing the 
computation effort and carrying out average values 
of mechanical properties. 
The masonry is modelled as an heterogeneous 
material made of blocks and joints which 
geometrical characteristics vary depending on 
masonry texture. Different textures are considered 
as reported in the following paragraph. Moreover 
also the mechanical characteristics should be 
different depending on original materials and time 
of construction, especially referring to historical 
heritage. For this reason it is useful to evaluate as 
these aspects could be influent on mechanical 
parameters as axial and flexural stiffness. Starting 
from a 3D heterogeneous problem, by means of a 
homogenisation procedure, the micromechanical 3D 
kinematic and static descriptors and constitutive 
prescriptions were transferred to a 1D model. Hence 
analytical solutions of the macroscopic field 
problem may be obtained. In this way the last one 
can take into account the micro-mechanical 
properties of masonry reducing the computational 
effort. To evaluate the reliability of the 1D 
homogenised model a 3D F.E. model has been 
performed. A numerical analysis has been carried 
out by comparing the stress along a specific cross 
section and the maximum displacement at the free 
end, for different textures and head joint thickness. 
 
 
2 Basic assumptions 
Three different masonry textures, which are 
generally present in historical masonry beam 
columns are considered. The masonry is made of 
UNI clay bricks (250x120x55 mm), whereas the 
mortar joint thickness varies (sh=10 mm for bed 
joint and sv=10÷30 mm for head joint). The 
following textures are considered: 
a) single block (250x250x55 mm) and bed joint; 
b) two blocks, connected by a head joint and bed 
joint, with same orientation, called stack bond 
masonry; 
c) two blocks, connected by a head joint and bed 
joint, rotated by 90°, called running bond masonry. 
Let be (x) a reference system for the global 
description of the masonry beam column, called ℑ 
in the macroscopic scale and let be (y) a reference 
system for the elementary module Υ-REV. The Υ 
module, as shown in figure 1 may be defined as 0: 
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where ti are the 3 dimensions of Y, according to 3 
axes directions; ω is the cross section of beam 
column and t3 is the high of the elementary cell. The 
boundary of Υ is defined as: 

3 3Y Y Y Y Yα α
+ − + −∂ = ∂ ∪ ∂ ∪ ∂ ∪ ∂  (2) 

where the Greek index α=1,2. 
 

 
Figure 1 From the elementary cell to Y/8 
 
The Υ-REV is described for each masonry texture in 
figure 2. Due to the symmetry and anti-symmetry 
plane, as showed in figure 3 on the upper side, the 
elementary cell may be reduced to 1/8 of it, called 
Y/8 sub-cell. Each Y/8 is made of brick and mortar 
following the appropriate texture. The elementary 
cell of running bond texture exhibits the t3 
dimension bigger than the ones of the others two 
textures. This aspect is due to the staggered 
alignment of head joints. 
 

 
Figure 2 Elementary cell used in analysis and 1/8 of 
it. 
 
 
3 Homogenisation procedure 
Heterogeneous materials may be studied using 
homogenization techniques that permit the 
definition of a homogeneous body, equivalent to a 
strongly heterogeneous one in its geometry and in 
the properties of its constituent materials. The 
application of these techniques is tied to the 
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assumption of the body "periodic" structure; then 
the body is obtained by the regular repetition of 
non-homogeneous REV, whose dimensions are 
small relative to the overall size of the body itself. 
Here a simplified model is presented relative to the 
case of beam column subjected only to normal 
stresses. The constitutive law of masonry, to model 
Euler beam column (i.e. shear effects are not taken 
into account), is expressed in terms of its 3D 
characteristics. The following auxiliary problem is 
solved on the elementary cell: 
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where σ is the Cauchy stress tensor; ε is the strain 
tensor; E is the macroscopic axial strain tensor; χ is 
the curvature tensor and uper is a periodic 
displacement field on ∂Υ3; a is the constitutive 
function defined as: aB for y ∈ block and aM for y ∈ 
mortar with aB and aM are respectively the block and 
the mortar constitutive law. Both the materials are 
assumed isotropic. The field equation (3) will be 
used for the numerical solution of the problem. 
The macroscopic tensors are related to the 
macroscopic displacement field (U1(x3), U2(x3) and 
U3(x3)) components as follows: 

, ,
1 ( )
2ij i j j iE U U= +  (4) 

where the Latin index i,j=1,2,3. In particular, due to 
the hypothesis of normal stress, the only E3 
component is considered different to zero. The 
relationship between the displacement field and the 
curvature tensor is: 

,3 ,33Uα α βχ ϕ= = −  (5) 
where ϕα is the rotation of beam cross section. The 
index α identify the rotation axis. 
Due to the 1D nature of the problem, the 
homogenised constitutive law of the beam subjected 
to eccentric axial loads, in the case of central 
symmetry, becomes: 
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where 〈⋅〉 is the average operator defined as: 
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4 F.E.M. Homogenisation procedure 
A numerical method was applied to evaluate the 
axial H33 and flexural Dαα homogenised moduli for 
a 3D beam column analysing different masonry 
textures as reported in paragraph 2. The field 
problem of the elementary cell may be reported to 
the Y/8 due to the symmetry planes. The periodic 
boundary conditions that must be imposed are: 

3 3 3 1 2 2 1 3 3( ) ( ) ( )peru E y y y y uχ χ= + − +y y  (8) 
in particular three relevant cases are considered: 

( ) ( ) ( )(1) (2) (3)1 ;     1 ;     1 ;Eχ χ= = =  (9) 
hence: 
• axial elongation along y3 axis: 

(3)
3 3 3( ) ( )peru E y u= +y y  

• curvature around  y1 axis: 
(1)

3 2 3 3( ) ( )peru y y uχ= +y y  
• curvature around y2 axis: 

(2)
3 1 3 3( ) ( )peru y y uχ= − +y y  

The imposed suitable boundary conditions for uper 
periodic on ∂Υ3

± are plotted in figure 3. 
 

 
Figure 3 Displacement conditions on elementary 
cell 
 
The Y/8 module is defined as follows: 
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The homogenised axial and flexural moduli are 
evaluated by numerical model on the Y/8 solving 
field problem (3). Hence it is: 
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where t3 is the thickness of elementary cell. 
The F.E. model is based on the following 
assumption as showed in 0: 
1. perfect continuity between joint and block; 
2. the periodic displacement fulfils the 
constant/linear assumption, at the boundary of the 
cell, of the macroscopic kinematics descriptors E 
and χ. 
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The finite element model has been built for each 
masonry texture, meshing the Y/8. Three elements 
are used in the discretisation of the mortar joint 
across its thickness . Both joint and block elements 
are modelled by 8 nodes elements. The constitutive 
laws for mortar and brick are linear elastic and 
isotropic. The mechanical properties of masonry in 
F.E. model are reported in table 1. 
 
Young modulus [N/mm2] Poisson ratio 
Eb = 10000 νb = 0.2 
Em = 1÷10000 νm = 0.2 

Table 1: Mechanical properties of masonry. 
 
The symmetry of the elementary cell entails a 
simplification of F.E. model. If the curvature tensor 
χα acts, the plane yβ=0 is plane of symmetry, 
whereas the planes yα=0 and y3=0 are planes of anti-
symmetry. The boundary conditions that must be 
imposed in the F.E. model for each masonry texture 
to evaluate the axial modulus H33 and the flexural 
moduli Dαα are reported in table 2 according to eq. 
(9): 
 
 y1 = 0 y2 = 0 y3 = 0 y3 = t/2 

H33 u2 = 0 u1 = 0 u3 = 0 u3 = Ε(3)⋅t/2 

D11 u1 = 0 u1 = 0; 
u3 = 0 u3 = 0 u3 = y2⋅χ(1)⋅t3/2 

D22 
u2 = 0; 
u3 = 0 u2 = 0 u3 = 0 u3 = -y1⋅χ(2)⋅t3/2 

Table 2: Applied boundary conditions at F.E. model. 
 
 
5 Numerical results 
In the following subparagraphs, a numerical 
experimentation on H33 axial and Dαα flexural 
homogenised moduli are reported for each masonry 
texture. H33=EHAH

33 where EH is the Young 
homogenised modulus of the masonry - block (Eb) 
and mortar (Em) - by assuming block and mortar as 
isotropic materials; AH

33 is the homogenised cross 
sections. Dαα=EHIH

αα where IH
αα is the homogenised 

inertia modulus. 
In the following figure 4, the mesh of Y/8 for the 
texture A, B, C is reported. 

Texture A 

Texture B 

Texture C 

Figure 4 Y/8 elementary cell meshing, for texture A, 
B (stack bond) and C (running bond). 
 
5.1 Analysis of textures 
Texture A is the simplest that should be present in 
the historical heritage. The elasticity has been 
considered concentrated in the mortar joints. In the 
numerical and analytical models the block is 
assumed also elastic (see table 1), in the aim to 
perform a comparison with the other masonry 
textures where the hypothesis of rigid blocks may be 
too restrictive. Obviously, according to the 
symmetry of cross section, the flexural modulus is 
the same respect the y1 and y2 axis. As expected the 
proposed F.E. model well fit the 1D analytical one. 
Texture B, called stack bond masonry, the thickness 
of head joint was assumed of 10, 20 and 30 mm 
respectively to evaluate the influence of the head 
joint size on axial and flexural moduli. Flexural 
moduli show differences due to the head joint 
thickness; this model is more sensitive to head joint 
size when the curvature acts along the y1 axis.  
The error obtained using the analytical model A, 
respect to del F.E. model B assuming the same 
geometrical cross section, increase reducing the 
ratio between mortar and block Young modulus. 
Furthermore the maximum value of the error is 
smaller than 10%. 
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Also in texture C, called running bond masonry, the 
thickness of head joint was assumed of 10, 20 and 
30 mm. Flexural moduli D11 and D22 do not differ 
because the head joint is present along both y1 and 
y2 axis. The head joint thickness has influence on 
axial and flexural moduli, but it is more evident on 
flexural modulus than on axial one: the increment of 
flexural stiffness when head joint thickness 
increases is less or equal to 35%, whereas the 
increment of axial stiffness is less or equal to 16%, 
when Em/Eb=1. The increment of head joint 
thickness size induces an increment in beam column 
stiffness due mainly to the increment of cross 
section. In fact this sensitivity is not present on axial 
stiffness variation. 
The error obtained using the analytical model A, 
respect to the F.E. model C, increase when the ratio 
between mortar and block Young modulus tends to 
zero; and it  is smaller than 10%. The error obtained 
is more consistent when the analytical model A is 
applied to evaluate the axial stiffness with the ratio 
Em/Eb=10-4, as for the previous masonry texture. 
The numerical results are reported detailed in [27]. 
 
5.2 Comparison between masonry textures 
Comparing stack bond and running bond masonry 
textures, the sensitivity to the bond and to the head 
joint thickness dimension is evaluated. 
The diagrams of figure 5 and 6 show the flexural 
modulus D11 and D22 versus Em/Eb=0.2÷0.4 
respectively. 
 

 
Figure 5 D11 comparison between masonry texture B 
and C respect to homogeneous model between 
Em/Eb=0.2÷0.4. 
 

Referring to D11The stack bond masonry texture 
(type B) is more deformable than the running bond 
masonry texture because the head joint is not 
continuous along the y3 axis and it is continuous 
along y2 axis. Increasing the head joint thickness, 
that is composed by mortar – the more deformable 
material -, the deformability decreases. This 
phenomena is more evident in texture type B. 
Referring to D22 , the texture B is not sensitive on 
head joint thickness increment, where as the texture 
C shows the same results along y1 and y2 axis. More 
attention has to be done analysing masonry elements 
with stack bond texture, especially if the load acts 
along the head joint plane. 
 

 
Figure 6 D22 comparison between masonry texture B 
and C respect to homogeneous model between 
Em/Eb=0.2÷0.4. 
 
 
6 Masonry column 
A 3D full F.E. model as been built to represent 
masonry column with single block, running bond 
and stack bond textures. The aim is to compare the 
3D heterogeneous model with the homogenised 1D 
model. Brick elements (8 node) are used both for 
blocks and for mortar joints (Fig. 7). 
The masonry column has a square cross section and 
it is 3240 mm high. The cross section dimensions 
depend on head joint thickness, nevertheless the 
influence of it is more evident for sv=30 mm. This 
value was assumed to compare 1D to 3D model. 
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Figure 7 3D heterogeneous numerical model or 1D 
homogenised analytical model. 
 
The column is loaded by an unit horizontal force in 
both direction (F11=1N and F22=1N) applied at the 
upper end, whereas the lower end is clamped. The 
comparison between the 3D full F.E. model and 1D 
homogenised model is carried out for 0.1≤ Em/Eb ≤ 
1. The displacement δ at the free end of a cantilever 
beam subjected to a transversal force is: 

3

3
Fl
Dαα

δ =  (14) 

where l is the column height. 
The displacement of the cross section centre at 
upper end of 3D model is considered and compared 
with the same point displacement obtained in 1D 
model. In figure 8, 9, 10 the ratio between the 
maximum displacement of 3D numerical model and 
1D analytical model respect to 1D model 
considering homogeneous material (Em=Eb=10 GPa) 
is plotted. 
The numerical results carried out show that a good 
agreement between 3D heterogeneous model and 
1D homogenised model for each texture. The 
simulation for texture A and C was carried out only 
for F11 because of the symmetry in masonry texture 
along y1 and y2 axes, as it was shown in the previous 
research [27]. The analysis for texture B was done 
both for F11 and F22 because the flexural behaviour, 
in this case, is dependent on stack bond joint. The 
displacement field is different along y1 and y2 axes 
and the discrepancy increases when Em/Eb ratio 
decreases(Fig. 9). 
 

 

Figure 8 Maximum displacement at top of masonry 
column for texture A. Comparison between 1D 
homogenised and 3D heterogeneous models versus 
Em/Eb ratio. 
 
In figures 11, 12, 13 the stress field of the first 
layers of blocks and head joint is reported. On left 
side of figures the masonry is heterogeneous (Em=1 
GPa; Eb=10 GPa); while on the right side of figures 
the masonry is considered as homogeneous 
((Em=Eb=10 GPa). It is evident as the stress is 
uniform along blocks and joint in the homogenous 
case, where as a gap is recorded between blocks and 
joints due to heterogeneity of masonry. 
 
 

Figure 9 Maximum displacement at top of masonry 
column for texture B. Comparison between 1D 
homogenised and 3D heterogeneous models versus 
Em/Eb ratio, for F11 and F22. 
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Figure 10 Maximum displacement at top of masonry 
column for texture C. Comparison between 1D 
homogenised and 3D heterogeneous models versus 
Em/Eb ratio. 
 

  
Figure 11 Texture A: stress field of 3D numerical 
model for heterogeneous and homogeneous 
material. 
 

  

  
Figure 12 Texture B: stress field of 3D numerical 
model for heterogeneous and homogeneous 
material, along y1 and y2 . 
 

  

  
Figure 13 Texture C: stress field of 3D numerical 
model for heterogeneous and homogeneous 
material, along y1 and y2. 
 
 
7 Conclusion 
The proposed 1D homogenised model allows to 
investigate easily the axial and flexural behaviour of 
masonry column, when a wider set of internal 
parameters varies (i.e. relative size of the joints, 
relative deformability of the joints). 
The 1D homogenised axial and flexural moduli take 
into account the micro-level (masonry texture) as 
shown in subparagraph 5.2. 
The obtained results, carried out for a meaningful 
case, show the reliability of the homogenisation 
procedure. The 1D model here presented is a first 
step in the study of masonry column behaviour. In 
particular the idea is to extend this model to a full 
1D beam model, in which not only the shear actions 
are taken into account but also the torque is 
considered. 
 
 
Acknowledgments 
The research project reported in this paper was 
conducted with the financial support of CNR-
MIUR, SP3, law 449/97. 
 
References: 
[1] A. Anthoine, Derivation of in plane elastic 

characteristics of masonry through 
homogenisation theory. International Journal 
of Solids and Structures, 32, pp. 137-163, 1995. 

[2] A. Cecchi and K. Sab, A multi-parameter 
homogenisation study for modelling elastic 
masonry. European Journal of Mechanics 
A/Solids, 21, pp. 249-268, 2002. 

[3] A. Cecchi and K. Sab, Out of plane model for 
heterogeneous periodic materials: the case of 

Proceedings of the 2nd IASME / WSEAS International Conference on Continuum Mechanics (CM'07), Portoroz, Slovenia, May 15-17, 2007      74



masonry. European Journal of Mechanics 
A/Solids, 21, pp. 715-746, 2002. 

[4] G. Alpa and I. Monetto, Microstructural Model 
for Dry Block Masonry Walls with In-Plane 
Loading. Journal of The Mechanics and 
Physics of Solids, 47 (7), pp. 1159-1175, 1994. 

[5] H.R. Lofti, P. Benson Shing, Interface model 
applied to fracture of masonry structures. 
Journal of Structural Engineering, 120, pp. 63-
80, 1994. 

[6] R. Luciano and E. Sacco, Homogenization 
Technique and Damage Model for Old 
Masonry Material. International Journal of 
Solids and Structures, 34 (24), pp. 3191-3208, 
1997. 

[7] R. Masiani, N.L. Rizzi and P. Trovalusci, 
Masonry walls as structured continua. 
Meccanica, 30, pp. 673-683, 1995. 

[8] S. Pietruszczak, X. Niu, A mathematical 
description of macroscopic behaviour of brick 
masonry. International Journal of Solids and 
Structures, 29 (5), pp. 531-546, 1992. 

[9] N.G. Shrive and G.L. England, Elastic creep 
and shrinkage behaviour of masonry. 
International Journal of Solids and Structures, 
29, pp. 103-109, 1991. 

[10] S. J. Lee, G.N. Pande and B. Kralj, A 
Comparative Study on the Approximate 
Analysis of Masonry Structures. Materials and 
Structures, 61 (4), pp. 735-745, 1998. 

[11] G. De Felice, Metodi di omogeneizzazione per 
sistemi regolari di corpi rigidi. Proc. Aimeta, 
Napoli, Italy, 1995. 

[12] G. Maier, A. Nappi and E. Papa, On damage 
and failure of brick masonry. Experimental and 
numerical methods in earthquake engineering, 
ed. by Donea and P.M. Jones, Ispra, pp. 223-
245, 1991. 

[13] G. De Felice, Détermination des coefficients 
d'élasticité de la maçonnerie par une méthode 
d'homogénéisation. Actes du 12ème Congrés 
Français de Mécanique, 1, Strasbourg, pp. 393-
396, 1995. 

[14] G. Salerno, G. De Felice, Continuum modelling 
of discrete systems: a variational approach. 
Proc. ECCOMAS, Barcelona, Spain, 2000. 

[15] G.N. Pande, J.X. Liang and J. Middleton, 
Equivalent elastic moduli for brick masonry. 
Comp. Geotechn., 8, pp. 243-265, 1989 

[16] P.B. Lourenço, Anisotropic softening model for 
masonry plates and shells. Journal o Structural 
Engineering, 126 (9), pp. 1008-1015, 2000. 

[17] A. Zucchini and P.B. Lourenço, A micro-
mechanical model for homogenisation of 

masonry. International Journal of Solids and 
Structures, 39, pp. 3233-3255, 2002 

[18] A. Anthoine and P. Pegon, Numerical strategies 
for solving continuum damage problems 
involving softening: application to the 
homogenization of masonry. Proc. 2nd 
International Conference on Computational 
Structures Technology, Atene, 1994. 

[19] S. Chiostrini and A. Vignoli, Application of a 
numerical method to the study of masonry 
panels with various geometry under seismic 
loads. Structural Repair and Maintenance of 
historical buildings, ed. Brebbia, 1989. 

[20] J.M. Gilstrap and C.W. Dolan, Out of plane 
bending of FRP-reinforced masonry walls. 
Composites sciences and Technology, 58, pp. 
1277-1284, 1998. 

[21] J. Lopez, S. Oller, E. Onate and J. Lubliner, A 
homogeneous constitutive model for masonry. 
International Journal Numerical Methods in 
Engineering. 46 (10), pp. 1651-1671, 1999. 

[22] A. Cecchi, G. Milani and A. Tralli, Validation 
of analytical multiparameter homogenisation 
model for out-of-plane loaded masonry walls 
by means of the finite element method. Jour. of 
Engineering Mechanics, 131(2), pp. 185-198, 
2005. 

[23] S.J. Lee, G.N. Pande, J.Middleton and B. Kralj, 
Numerical modelling of brick masonry panels 
subject to lateral loading. Computers and 
Structures, 31 (211), pp. 473-479, 1996. 

[24] X. Zhang, S. Singh, D.K. Bull and N. Cooke, 
Out of plane performance of reinforced 
masonry walls with openings. Journal of 
Structural Engineering, 127 (1), pp. 51-57, 
2001. 

[25] A. Cecchi, G. Milani and A. Tralli, In-plane 
loaded CFRP reinforced masonry walls: 
mechanical characteristics by homogenisation 
procedures. Composites Science and 
Technology, 64, pp. 2097-2112, 2004. 

[26] A. Cecchi, N.L. Rizzi, Heterogeneous material: 
a mixed homogeneization rigidification 
technique. International Journal of Solids 
Structures, 38 (1), pp. 29-36, 2001. 

[27] A Barbieri., A. Cecchi, A. Di Tommaso, 3D 
homogenisation procedure for load bearing 
masonry columns. Proc. ECCOMAS, Lisbon, 
Portugal, 2006. 

Proceedings of the 2nd IASME / WSEAS International Conference on Continuum Mechanics (CM'07), Portoroz, Slovenia, May 15-17, 2007      75


