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Abstarct : Within the framework of the normal dissipative processes theory, a plasticity-like model is proposed 
for the shape memory alloys pseudoelastic behaviour. Its numerical implementation is performed using return 
mapping algorithms. Originally designed for elastoplasticity, this kind of algorithms requires suitable 
modifications in order to assure the uniqueness of the computed solution. A constitutive frame for proportional 
and non-proportional loading is also proposed for finite strains analysis. 
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1 Introduction 
The growing interest in smart structures 
technologies has led in the last decades to the 
formulation of a variety of constitutive models for 
shape memory alloys (SMA). However, most of 
these models are so demanding from a 
computational standpoint that, except some ones, 
their application has been limited to only one-
dimensional situations. 
In this work attention is focused on a 
phenomenological model of isotropic 
pseudoelasticity emanating from that originally 
presented in [1][2][3], and on its numerical 
integration. The constitutive model under 
consideration is formulated in the framework of 
internal variables theory of inelastic behaviours, 
namely, by defining the transition criteria 
determining the onset of phase transitions (SMA 
pseudoelasticity is a reversible behaviour 
associated with a stress-induced solid-solid phase 
transition from a parent phase called austenite to a 
product phase called martensite) in a way 
completely analogous to the loading functions of 
plasticity theory. Although consistent with classical 
rate-independent behaviour modelling, this 
approach requires, however, suitable modifications 
of numerical algorithms originally designed for 
elastoplasticity. Return mapping algorithms are 
discussed in detail hereafter. 
In order to perform finite strains analysis, a closed 
form of the proposed modelling for small strains is 
developed within the context a non-material 
rotating frame formulation. In this context, a 

constitutive frame is suggested to take non-
proportional loading into account. 
 
 
2 Constitutive equations 
From the thermodynamic point of view, the SMA 
pseudoelastic behaviour is irreversible. 
Nevertheless, a consistent modelling can be derived 
within the classical framework of the irreversible 
processes thermodynamics by using the concept of 
“constrained equilibrium” [4] according to which 
the rate of state variables or inelastic flows 
corresponding to some thermodynamic forces may 
vanish even though the forces are non-zero. 
In order to derive the Helmholtz specific free 
energy function for SMA at “constrained 
equilibrium”, the specific free energy of a solid 
two-phase mixture with interaction between the 
phases [1] can be used. Thus : 

, dima zz ψψψψ ++−= )1( z  being the martensite 
volume fraction (the detwinned martensite variants 
are not distinguished),  and  the pure 
austenite and the pure martensite specific free 
energies respectively and  a specific coherency 
energy. 

aψ mψ

diψ

Assuming that both phases have equal mass density 
ρ and elastic stiffness matrix E aψ mψ,  and  can 

be chosen as :  and aaTa
R

a E εερψψ 2/10 +=

;  and )()(2/10 εεεερψψ Δ−Δ−+= mmTm
R

m E aε mε  
are the austenite and martensite intrinsic total strain 
tensors respectively and εΔ  a strain tensor 
associated with the martensite creation. 
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Considering that for a prescribed macroscopic total 
strain tensor ε  , aε  and mε  must comply with the 
Reuss bound model i.e. ma zz εεε +−= )1( , 
equilibrium conditions can be derived from the 
optimality conditions of  the  lagrangian 
function [ ] ρσεεεψψ /)1(L maT

zz −−−+=  where 
σ  is the macroscopic stress tensor [2]. At fixed z 
and ε , it is shown that σ  is equal to the stresses 
tensors in both phases i.e. aa

a ψρσ
ε

∂=  and 
mm

m ψρσ
ε

∂= . The Helmholtz specific free energy 
function of the two-phase system in “constrained 
equilibrium” can then be defined as a potential 
function for )( trE εεσ −=  where εε Δ= ztr  is the 
macroscopic inelastic strain tensor associated with 
the stress-induced phase transition. Thus: 
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The resulting intrinsic dissipation is: 
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;0D

0
di

zR

trTmech

R
zR

ψπρ
εσ

∂−−=

≥−=   (2) 

 
The thermodynamic equilibrium states are those at 
which the intrinsic dissipation vanishes for any 
state admissible change. Depending on the form of 
the specific coherency energy , these states 
define the turning points location for partial 
loading-unloading from “constrained equilibrium” 
states. 

diψ

In absence of a good knowledge about the 
nucleation and growth of martensite within 
austenite leading to the exact form of , the 
simplest function of  such as  for 
pure austenite  and pure martensite 

diψ
)1( zz − 0=diψ

)0( =z )1( =z  
has been proposed by Müller in [1], limiting the 
modelling to a behaviour type where the unstable 
equilibrium states are located along a single 
diagonal line. 
In order to account for different configurations of 
unstable equilibrium states, a plasticity-like 
phenomenological approach can be used assuming 
two independent normal dissipative processes : one 

for the forward transition (austenite →  martensite) 
characterised by , the other for the reverse 
transition (martensite  austenite) characterised 
by 

0>z
→

0<z . Thus,  is given at any time by two 
independent functions of 

mechD
trε  and z : 

 
{ }
{ } 0);(;),(DD

0);(;),(DD

<=

>=

zifhzz

zifhzz

ma
tr

ma
mech

am
tr

am
mech

ε

ε
  (3) 

 
amh  and  are sets of history parameters [5] i.e. 

the energy dissipated during phase transitions is 
history dependent. 

mah

In the particular case of a rate-independent 
behaviour (plasticity-like behaviour), these 
functions are convex, positively homogeneous of 
degree one. 
Since the forward transition (austenite →  
martensite) can be initiated in any loading 
direction,  is a quasi-positively homogeneous 
function defining a full convex cone in an eight-
dimensions space such as 

amD

{ } 0);(;)0,0(D =amam hz . 
Following the generalised standard materials 
formalism, the phase transition kinetics trε  and z  
belong to the subdifferential of the indicator 
function of the convex domain 

{ }0),(/),( ≤=Ω RR amam σϕσ  i.e. the elasto-
dissipative domain. What leads to the maximum 
dissipation principle from which the normal 
evolution laws amam

tr ϕλε σ∂=  and  

are obtained. The Lagrange multiplier  is 
derived from the consistency condition 

amRamz ϕλ ∂−=

amλ
0=amϕ . 

The normality of the phase transition rates direction 
to the yield surface amϕ  has been clearly established 
experimentally in the case of a CuAlBe alloy [6] 
(Fig. 1). 
Considering that the SMA behaviour is isochoric, 
asymmetric in tension-compression but symmetric 
in pure shearing, a formal equation of the yield 
surface amϕ  could be [5]: 
 

[ );()(1
;0);(),( 32

amam
eq

am

amamam

hzzR

hzJJ

Π+=Σ

≤

]

Σ−Σ=

γ

ϕ
 (4) 

 
where Σ  is an effective stress depending on the 
second  are and the third  invariant of the 
Cauchy stress tensor 

)( 2J )( 3J
σ ,  the threshold stress in 

pure shearing  and 
amΣ

eqγ  the maximum phase 
transition strain in the equivalent stress-strain 
plane.  
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Thus: 
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tr z
γ
λ

λε σ =Σ∂=   (5) 

 
For a rate-independent and isotropic behaviour, Σ  
is a positively homogeneous function of degree 
one. Choosing ryqJp )1(3 2 σ+=Σ , where p ,  
and 

q
r  are material parameters and 

, the tension-compression 
asymmetry is observed for different values of 

2/3
23 )3(2/27 JJy =σ

r , 
but for certain values of  a loss of convexity may 
occur. This problem can be avoided by using the 
alternative 

q

)(3 2 σyfJ=Σ  where 
,  being 

material parameter [6]. 
[ ][ ]3/)1(1coscos)( 1

σσ yay −−= −f [ ]1,0∈a

 
 
 
 
 
 

 
 

 
 
 

 
 
 
 
Fig.1: Forward phase transformation yield surface 

for a CuAlBe Alloy [6] 
 
The definition of the threshold shear stress amΣ  
needs the knowledge of the coherency energy  

and the dissipation function  
. In order to overcome these 

problems, a set of constitutive functions 
(“hardening functions” , turning points 
location functions ) is used within the 
framework of a phenomenological approach (Fig. 
2). 

diψ
?))(( =zR amD

?));(( =Π amam hz

)(zf am

)(zg am

Since the inelastic strains must be recovered during 
the reverse transition (martensite →  austenite), it 
comes from (5) that zhz ;( mamama )D Π=  where 

 is the phase transition driving force. 
Proceeding like for the forward transition, one 
obtains then  with 

0<Π ma

mamaz φλ Π∂−=

0);( ≥Π−Π= mamama hzφ  and )(zRT
eq −Σ∂=Π σσγ  

[5]. The Lagrange multiplier  can be derived 
from the consistency condition  or 

maλ

0=maφ 0=maϕ  
with: 
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Fig. 2: Constitutive functions for phenomenological 

modelling in pseudoelasticity 
(a) Internal loops with elastic domain 

(b) Internal loops without elastic domain 
 
 
But in both cases, it is necessary to know the 
inelastic strain rates trε  as function of z . What 
suggests a three-dimensional modelling which 
could be based, within the framework of a 
phenomenological approach, on a unique yield 
function maϕ  for all possible reverse transitions 
(contrary to the forward transition, the reverse 
transition can not occur in any direction). maϕ  
delimits, in this case, a non-convex elastic domain 
when this domain exists (Fig. 3). 
 
Following the classical plasticity formalism 
(generalised standard materials formalism), the use 
of the maximum dissipation principle in order to 
derive the complementary evolution laws requires a 
convex constrained region. Such a region can be 
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defined here by a function 
);,();,( mama hzhR σκσκ =  such as: 

 

0);(0);,(
0);(0);,(

=Π−Π=
>Π−Π>

mamama

mamama

hzwhenhz
hzwhenhz

σκ
σκ

 (7) 

 
Choosing );();,( mama

T
ma hzDhz tr Σ−= εσσκ  where 

zD eq
tr
eq

tr
eq

tr
tr γεεεε == ;/  (see also [3]) is the last 

inelastic strains direction before unloding, it comes 
then: 
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z
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Note that in the particular case of proportional 
loading, Σ∂=∂= σσε ϕ amtrD  (Fig. 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Forward and reverse phase transitions yield 

surfaces 
 
 

3 Discrete formulation 
Within an incremental method associated with a 
Newton iterative scheme, the basic problem is to 
update the state of the material in a way consistent 
with the constitutive model knowing the total 
incremental strains εΔ  over a time interval 

. Hence, for the proposed modelling: [ tt nn 1, + ]

{ } { }zz nnnn 11 ,, ++→Δ+ σεσ ,  meaning the 
previous convergent quantities and  the 
current ones. The relationships between these 
quantities are derived from the constitutive 
equations established in the previous section. Using 
a fully implicit integration scheme over the time 
interval 

(.)n

(.)1+n

[ ]tt nn 1, + , it comes from the incremental 
stress-strain relationship )( trE εεσ −= : 
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with, from the evolution laws (5) and (8): 
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for the forward transition, and: 
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for the reverse transition,  verifying: zn 1+
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Adopting a full Newton approach to solve the strain 
driven finite-step constitutive problem associated 
with the forward transition, one obtains at iteration 
i+1: 
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The 4-order tensor Σ∂Δ+=

+

− 2

1

1G σσγ
neq zE ; 

)( 1 zzz nn −=Δ + , being definite positive since it is the 
sum of the positive definite tensor 1−E  and of the 
positive semi-definite one (in the more general 
case) Σ∂Δ

+

2

1 σσγ
neq z  since amϕ  is convex and 

0>Δzeqγ , this system can be reduced to compute 
. zn 1+
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The building of a plasticity-like SMA pseudoelastic 
behaviour for the forward transiion, suggests the 
use of a classical predictor-corrector scheme to 
compute the material stress state (Table 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table1: Stress computation algorithm for the 
forward transition 

 
The solution of the associated finite-step 
constitutive problem and the evaluation of the 
consistent tangent operator [7] require the inversion 
of the fourth-order tensor G . In this respect, it is 
proved in [8] that the assumption of isotropic 
behaviour entails an explicit representation formula 
for 1G −  as linear combination of dyadic and square 
tensor products. All tensor operations required to 
compute the coefficients of the adopted formula are 
carried out in intrinsic form. 

 
For the reverse transition, since the elastic domain 
is not convex (Fig. 3), an intermediate correction 
step is necessary to assure the uniqueness of the 
computed solution (Table. 2). The intermediate 
correction step consists in the projection of the 

elastic trial stress state on the convex region 
defined by the dissipation potential function (7) 
(Fig. 4). 
 
 

Elastic prediction : Compute a trial state  
 for a given total incremental strains εΔ   
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 (before going through  the yield surface)  Elastic prediction : Compute a trial state for 
given  else 

Intermediate inelastic correction : Compute 
 an intermediate inelastic state as the 
projection of the elastic trial stress state on 
the convex domain defined by 
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nelastic correction : The final stress state is 
btained as the closest-point projection of the 
rial stress state on the elastic domain. At 
teration i+1 
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Inelastic correction :  
The final stress state is obtained as the 
closest-point projection of the intermediate 
inelastic stress state on the internal  
boundary of the elastic domain.  
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 Enforcing the yield condition  
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Table 2: Stress computation algorithm for the 
reverse transition 

 
 
4 Finite strains modelling 
The approach used to build a finite transformations 
kinematics for the SMA themomechanical 
behaviour study is based on the concept of 
deformed intermediate configuration introduced for 
the first time by Eckart [10] and the notion of 
director vectors due to Cosserat and Cosserat [11], 
resumed by Mandel [12]. 
 
In the case of the SMA, the director vectors notion 
allows to orient and then to fix a non-relaxed 
intermediate configuration associated to the phase 
transition in the material. Assuming an elastic 
behaviour independent of the state phase, the 
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following decomposition of the transformation 
gradient is introduced: 
 

ine FqIF )( ε+=    (15) 
 

inF  is the transformation gradient due to phase 
transition and re orientation allowing to connect a 
reference configuration to an intermediate one in 
which a director frame linked somehow to the 
material internal structure preserves its initial 
orientation. The evolution of this frame up to the 
current configuration, in which the elastic 
deformations eε  ( 1<<eε ) are measured, is 

defined by the rotation q  ( 1det; == qIqq T ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4: Intermediate step for the stress computation 

in the reverse transformation 
 

The SMA are characterized by a possible reversible 
phase transition austenite ↔  martensite. Their 
behaviour being associated with solid-solid phase 
transition according to specific planes called habit 
planes, an orthonormal direct frame defined by 
these planes as an average of their orientation can 
be considered as director (Fig. 5). 
The expression of the total deformation gradient 
(15) leads to the following decomposition of the 
material strain rate tensor [ S

FFD 1−= ]  in the 
intermediate configuration ( qqT

q
(.)(.) = ): 

 
[ Sininin

q

in

q
e
qq FFddd 1; −=+= ε ]  (16) 

 

qd is a cumulated tensorial deformation in the 
sense introduced by Gilormini et al. [13]. 
 
 
 
 
 
 (
 DF 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 5: (a) RVE Director Frame 

(b) Director Frame linked to the habit planes 
 
The intermediate configuration can be defined 
through the decomposition of the material spin 

[ ]A
FFW 1−=  in the current configuration, by 

solving: 
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That is why the knowledge of the spin inW  of the 
material milieu, as regards its material structure, is 
needed. Beyond the micro-macro approach 
seeming to be more natural to get this knowledge, 
the use of anti-symmetric isotropic tensorial 
functions representation theorems or the choice of a 
kinematics rotation consistent toward a 
phenomenological approach, are both other 
possibilities to assess the value of  inW . For random 
or pseudo-random distributions of the habit planes, 
a family of objective kinematics rotations q  can be 
defined by solving the following differential 
problem: 
 

σ
n
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where R  is the proper rotation associated with F . 
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Fig. 6 : Bulging test  on a CuAlBe plate [7] 

(thickness = 100 μm) 
 
 
5 Non-proportionnal loading 
Assuming that the state of the material in the 
intermediate configuration is completely decribed 
localy by the cumulated tensoral strains qd  and the 

inelastic strains dtdd
t

in

q
in
q ∫=  which consist on one 

part due to phase transition and another one due to 
re orientation, a tensorial hardening variable α , a 
scalar hardening variable α , the volume fraction of 
martensite z and the temperature T, the Clausius-
Duhem  inequality gives the following state law in 
the case of homogeneous and isothermal loading:  
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d

T
q

q
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and the intrinsic dissipation: 
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zR ∂∂= /ψρ , ψ  being the specific free energy 
function: 
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Its expression can be given as a polynomial of the 
integrity basis terms associated to the second order 
symmetric tensors e

qε  and α  for the complete 
orthogonal group: 
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λ  and μ  are the Lamé coefficients, δ  a 
positive material parameter, f a convex function of 
α  and  the Heaviside function  (NPH 1=NPH  for 
proportional loading,  for non-proportional 
loading). The term 

0=NPH

( )( ) ( )[ ] NP
e
q

e
q Htrtrtr αεμαελ +  

is the expression of a neutral coupling between 
pure creation and re orientation of martensite. It 
allows us to preserve an inactive centred to the 
origin re orientation yield function for any 
proportional loading in the stress space (Fig.7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inactive reorientation  
yield surface during  
proportional loading 

Active reorientation  
yield surface during 
non-proportional loading 

I  

III

σ

 
Fig. 7: Re orientation yield surface during non-

proportional loading 
 
Assuming that the phase transition or martensite 
creation (index tr) and re orientation (index re) 
phenomena remain uncoupled, the following 
evolution laws can be established considering rate 
independent normal dissipative processes: 
 

σIIσ

qX σ=  
 qσ

X  α
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 (23) 

 
In the case of pure creation, the constitutive frame 
built in the hypothesis of small strains can be 
extended for finite strains analysis by using the 
corresponding quantities in the intermediate 
configuration. For forward 
transformations , amtr λλ = ( )amqamtr hR;,σϕϕ =  and 

for reverse ones , matr λλ −=

( )== maqtr hR;,σκϕ maeq
tr
qq

tr
q

T dd Σ−)/(σ Numerical 
integration in a shell context and applications are 
presented in [7]. See also [14] for the computation 
of a consistent tangent operator. 
 
 
6. Conclusion 
A systematic approach for modelling of the SMA 
pseudoelasticity is proposed in this paper which 
correct and extend a previous one [15]. Based on 
the hypothesis of two independent normal 
dissipative processes : one for the formaward 
transition (austenite →  martensite), the other for 
the reverse one (martensite  austenite), this 
approach leads to a plasticity-like class of models. 
Their numerical integration using algorithms 
originally designed for elastoplasticity, requires 
suitable modifications in order to insure the 
uniqueness of the computed solutions. An 
extension of this modelling has been performed  for 
finite strains analysis using a non-material rotating 
frame formulation. The performances of such an 
approach have been tested in a specific shell 
context for thin structures analysis through a set of 
experiment [7]. The test of the proposed modelling 
in the case of non-proportional loading is in 
progress. The director frame updating in the case of 
oriented sub-structure remains an open problem. 
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Appendix: Hardening functions for a strong 
history dependent pseudoelastic behaviour 
 
Considering the behaviour depcited fig. 2.b, the 
bounding loop hardening function  
is introduced for the forward transition, with: 

)()( zfzf am
Δ= σ

 
]8/1)2/1[()4/1()( 3 +−+−= znznzf  (24) 

 
Δσ  and  ]4,0[∈n  are material parameters [6].  

 
If we unload at point i, the corresponding 
martensite volume fraction  is memorised i.e. M

iz
{ }M

ima zh = . For the reverse transition between 
points i and j, the hardening function is: 
 

])()[/()( i
ma

M
iam

M
i

i
mama fzfzzffzf −+=  (25) 

 
with ;  is a material parameter. M

i
i

ma zf Δ−= σ̂ Δσ̂
 

If we reload at point j, the corresponding martensite 
volume fraction  is memorised with  i.e. m

jz M
iz

{ }m
j

M
iam zzh ,= . Between  j and l, the hardening 

function is: 
 

)]()([
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M
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m
j

M
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m
j

m
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=

  (26) 

 
If we hand the point l and reload up to i, the 
internal loop (iji) is closed and the history 
parameters  and  are then cancelled i.e. M

iz m
jz

{ }φ== maam hh . Beyond i the phase transformation is 
driven by .  )()( zfzf am

Δ= σ
 

Nevertheless, if  we unload at point l, the 
corresponding martensite volume fraction  is 
memorised i.e. 

M
lz

{ }M
l

m
j

M
iam zzzh ,,=  and the hardening 

function is: 
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m
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M
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M
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M
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  (27) 

 
Following this scheme, the hardening functions 
form can be easily generalised by recurrence. 
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