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Abstract: Groundwater systems behaviour is usually very hard to simulate due to the uncertainty of the hydraulic 

parameters involved. Fuzzy analysis is one of the available tools that can be used for such problems, involving 

uncertain data. The behaviour of hydrological systems is usually simulated using partial differential equations (PDE). 

The exact value of various coefficients (transmissivity, dispersion, etc.) of the PDE is often not accurately known. 

Many authors propose the use of fuzzy arithmetic to deal with uncertainties, occurring in water management 

problems. In such an approach, uncertain or vague parameters are defined as fuzzy numbers. A fuzzy analysis 

approach of water management problems usually involves the consideration of several a-level cuts and an explicit 

scheme approach for the PDE's discretization. Several application examples of this approach are listed in the 

literature, including uncertainty in transmissivities, porosities, dispersivities, and deoxygenation rate 

coefficient . 
A methodology for the simulation of aquifers having vague values of hydraulic parameters is introduced in this 

paper, and an analytical solution for a two-dimensional application example is presented. The two-dimensional 

problem of drainage is addressed using fuzzy analysis by defining the hydraulic conductivity K as a Triangular Fuzzy 

Number (TFN).  The analysis utilises the a-cut method for a 0 and 1 membership function and the results are 

compared with a-cut when the membership function is 0, 0.25, 0.5, 0.75 and 1.  
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1 Introduction 
Fuzziness, as handled in fuzzy logic, can refer to 

various types of vagueness and uncertainty but 

particularly to the vagueness related to human 

linguistics and thinking, differing from the uncertainty 

of the Probabilistic Theory [10]. 

 

1.1. Definition 1. Fuzzy set. 
If X is a collection of objects denoted 

generically by x, then a fuzzy set A in X is a set of 

ordered pairs: ( )( ){ }XxxxA
A

∈= µ, . Where ( )x
A

µ  

is called the membership function or grade of 

membership (also degree of compatibility or degree of 

truth) of x in A  that maps X to the membership space  

(When M contains only the two points 0 and 1, A  is 

no fuzzy set) [11].  

 

1.2. Definition 2. α-level cut. 
The α-level cut (α-level set) of the fuzzy subset 

A is the set of those elements, which have at least α 

membership:  

( ){ }αµα ≥= xxA A
. If ( ){ }αµα >=′ xxA A

 

is called “strong α-level cut”. 
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Fig. 1: A fuzzy number and an α-level cut 

 

 

1.3. Definition 3. Convex fuzzy set. 
A fuzzy set is convex if: 
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Also a fuzzy set can be convex if all α-level sets are 

convex.   

 

1.4. Definition 4. Fuzzy numbers. 

A fuzzy number M is a convex normalized set M of the 

real line R such that: 

1. It exist one Rx ∈0 with ( ) 10 =xMµ  (x0 is called 

the mean value of M) 

2. ( ) 1=xMµ  is piecewise continuous. 

 

When fuzzy set theory is used to solve real 

problems of realistic size, it is more efficient to use a 

special type of fuzzy numbers, the LR-type [11]. 

 

1.5. Definition 5. LR-type. 
A fuzzy number M is of LR-type if there exist 

reference functions L (for left), R (for right), and 

scalars α>0, β>0 with  
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m, is a real number called the mean value of M, and α 

and β are called the left and right spreads respectively. 

A triangular fuzzy number (TFN) is a special case of 

semisymetric  LR fuzzy number [7], [11]. To specify a 

TFN we use the three values (α1, α2, α3) of the triangle 

base, where α1≤α2 ≤α3 . 

Strictly speaking, these special cases of fuzzy 

numbers are fuzzy intervals. So every a-level cut, 

actually, gives an interval number. Disposing various 

a-level cuts we can construct a fuzzy number in 

discrete form. Finally, if we want to use fuzzy sets in 

applications, we will have to deal with interval number 

operations [11], [3]. 

 

If * is one of the symbols +, -, ·, /, we define arithmetic 

basic operations on interval number by 

[ ] [ ] { }dycbxayxdcba ≤≤≤≤∗=∗ ,,,  except that 

we do not define [a, b]/[c, d] if 0 ∈  [c, d]. Specifically, 

[a, b]+[c, d] = [a + c, b + b],  [a, b]-[c, d] = [a - d, b - 

c] 

[a, b] · [c, d] = [min(ac, ad, bc, db), max(ac, ad, bc, 

db)], [a, b]/[c, d] = [a, b] ⋅ [1/d, 1/c] if 0 ∉  [c, d]. [8] 

 

 

 

2 Problem Formulation    
In this article, a two-dimensional analytical 

solution for obtaining the groundwater level is 

presented. Examples of real applications are: Drainage 

of an area, by drainpipes or natural ground 

configurations, drainage systems with subsequent well 

points, which are applied in soil operations in dry 

conditions, on grounds with a rich groundwater 

supply. 

The analytical solution of the two-dimensional 

problem is derived from the two-dimensional 

linearized Boussinesq equation. 
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Where 
S

HK
a

×
= , t denotes time, x, y Cartesian 

coordinates, h  water table elevation, K  the hydraulic 

conductivity, H the average value of the water table 

elevation and S is the Specific Yield of the soil.  

 

The following one-dimensional analytical 

solution for a drainage problem is obtained [12], [5]. 
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Where t denotes time, x denotes distance from the 

drainpipe and R1 is the half of the drain spacing. 

Using Fourier series approach and the above 

equations, the solution of following two-dimensional 

drainage problem is obtained.  [13], [5]. 
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3 Problem Solution 
Equation (3) is applied to a subsurface drainage 

system for a homogeneous and isotropic soil. A 

rectangular area with a pipe drainage system is 

assumed, figure 4. The drainpipes are located at the 

four sides of the rectangular and a Cartesian axes 

system is referenced to the centre of the rectangular 

area. 

The initial condition is the saturated status of the 

area and at time t=0 the ground water starts to flow to 

the surrounding drainpipes. The phenomenon is 

symmetric; therefore the theoretical solution can be 

applied just to the quarter of the study area. 

Drainpipe

DrainpipeDrainpipe

Drainpipe

 

Fig 2: Area with a pipe drainage system 

 

The equation (3) gives the temporal and spatial value 

of the water table height in every position given by the 

combination of the spatial steps dx, dy in every time 

step dt. 

 

Settlement of the problem (figure 3): 

 

Water table

Drainpipe

Ground surface

 

Fig 3: Cross section of the drainage system 

 

Initial conditions:      t=0, Ηa=Η1=3m 

Boundary conditions: x=Rx=100m, Hx=Ha=1m, 

y=Ry=100m,     Hy=Ha=1m 

Spatial step:      dx=dy=10m 

Time step:      dt=1day 

Specific yield     S = 0,2  

 

The uncertain parameter of the problem is the 

hydraulic conductivity K. A well-known value of K is 

10m/day and cannot be greater than 20 m/day and less 

than 1 m/day. Those three values create a Triangular 

Fuzzy Number (TFN) (1,10,20). 

When calculations include at least a fuzzy number, 

then the solution becomes a fuzzy number also [Dou, 

Woldt, Bogardi, Dahab 1995]. Consequently, for every 

time step and every spatial step, the water depth, 

which is a fuzzy number, is found. 

Initially we use several a-cut levels (0.0, 0.25, 

0.5, 0.75, 1.0) of the K (TFN) to obtain the solution of 

equation (3) and then from the intervals of the 

solutions we construct the fuzzy solution. So we use 5 

a-cuts to obtain the solution  

The second approach was to apply directly the 

three values of the K (TFN) to the equation (3). The 

three values of the solution of the equation (3), 

constitute the (TFN) of the solution. So we use 2 a-

cuts to obtain the solution  

Figure 4 shows both fuzzy solutions of equation 

(3) at point (0,0) for time t=10days. Figure 5 shows 

both fuzzy solutions at point (50,50) for time 

t=10days. 

At the figures 4 and 5 “G025” is the gravity 

centre of the trapezium between the intervals at a-cut 0 

and a-cut 0.25. Respectively “G050” is the gravity 

centre of the trapezium between the intervals at a-cut 

0.25 and a-cut 0.50, “G075” is the gravity centre of the 

Ground surface  

Water table  

H
(x
,y
,t
) 
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H
1
=
3
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trapezium between the intervals at a-cut 0.50 and a-cut 

0.75 and “G1” is the gravity centre of the triangle 

between the intervals at a-cut 0.75 and a-cut 1. Also 

“G_triangle” is the gravity centre of the TFN and “G 

total a-cut” is the gravity centre of the 5 a-cut shape 

solution    
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Fig 4. Fuzzy value of water table level H at position 

(0,0) after 10-day drainage 
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Fig 5. Fuzzy value of water table level H at position 

(50,50) after 10-days drainage 

 

In this paper the solution was approached with 

an explicit fine element solution.   

Specifically we applied an analytical solution 

and we defuzzified the two different fuzzy solutions 

just to compare the result.  

For the defuzzification we used the method of 

fuzzy mean, or center of gravity. We calculate 

correspondingly the center of gravity of the TFN and 

from the shapes that are formed from the successive    

a-cuts and we use it as final result of our application. 

Thus the comparison of the results ends up being the 

comparison of the values of the centers of gravity.  

The centre of gravity of the complex form is calculated 

by first calculating the centre of gravity of each of the 

three trapeziums and of the triangle which are 

generated from the a-cuts. Finally the resultant 

coordinates are calculated. 

 The mean square error (mse) is used in order to 

compare the defuzzified values of the two fuzzy 

solutions and the results are shown in table 1. 

 

 

 

Table 1. 

 TFN  (2 a-cut level 

values) 

5 a-cut level values 

x,y,t 
(m,m,days) 

XG2 YG2 XG5 YG5 

0,0,1 2.9662 0.3333 2.9785 0.3102 

0,0,10 1.8365 0.3333 1.7061 0.3528 

0,0,20 1.6552 0.3333 1.3414 0.2622 

50,50,1 2.9662 0.3333 2.9785 0.3102 

50,50,10 1.6534 0.3333 1.4167 0.3104 

50,50,20 1.4251 0.3333 1.1925 0.2405 

     

 h' a b msr(%) 

x,y,t 
(m,m,days) 

max (XG2, 

XG5) 
XG2/ h' XG5/ h' (a-b)

2
*100 

0,0,1 2.9785 0.9959 1.0000 0.0017 

0,0,10 1.8365 1.0000 0.9290 0.5039 

0,0,20 1.6552 1.0000 0.8104 3.5933 

50,50,1 2.9785 0.9959 1.0000 0.0017 

50,50,10 1.6534 1.0000 0.8569 2.0481 

50,50,20 1.4251 1.0000 0.8367 2.6655 

     

 h' a b msr 

x,y,t 
(m,m,days) 

max (YG2, 

YG5) 
YG2/ h' YG5/ h' (a-b)

2
*100 

0,0,1 0.3333 1.0000 0.9307 0.4803 

0,0,10 0.3528 0.9449 1.0000 0.3039 

0,0,20 0.3333 1.0000 0.7867 4.5516 

50,50,1 0.3333 1.0000 0.9307 0.4803 

50,50,10 0.3333 1.0000 0.9312 0.4739 

50,50,20 0.3333 1.0000 0.7214 7.7595 

 

 

4 Conclusions 
The analytical solution for two-dimensional 

drainage problem was used for the investigation of the 

uncertainty of the aquifer's hydraulic conductivity on 

the numerical results, using two different techniques of 

fuzzy logic analysis. 

With this analytical solution, the direct solution 

of the problem concerning the two-dimensional 

groundwater flow was achieved, without iterative 

calculations, for every point and at any time.  

The two different fuzzy solutions were 

compared by using the mean square error (mse). The 

results that are shown at table 1 indicate that the two 

solutions are practically the same for drainage duration 
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up to 10 days, since they differ less than 2.1%  and the 

center of gravity of a 5 a-level cut is always included 

in the area of   2 α-level cut (TFN) application. 

The restrictions of the iterative calculations, 

truncations errors or logic errors, are removed by the 

analytical solutions which permit simpler solving 

techniques. 
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