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Abstract: - The paper deals with a study of the solutions trajectories of an Euler type gyroscope, on constant 
level energy surfaces. Using Mathcad software and the prime integrals of Euler’s equations, we generated the 
possible positions of the angular momentum according to the magnitude of the principal moments of inertia, as 
a result of the intersection between an ellipsoid and a sphere. Also the stability of the equations solutions was 
analyzed by help of cross – sections along perpendicular planes determined by the principal axis of inertia for 
the studied body. 
 
Key-Words: - kinetic energy, angular momentum, trajectory, prime integrals, Euler equations, stationary 
rotation 
 
1   Introduction 
Considering the fixed point motion of a rigid body, 
not subjected to external forces (Euler type 
gyroscope) and K the angular momentum of the 
body with respect to the fixed point, Euler used to 
prove the following theorem: 
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K
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where Ω represents the gyroscope angular velocity 
about the reference system attached to it.  
Of course, the angular momentum vector with 
respect to the space system of reference remains 
constant, both in magnitude in direction during the 
entire motion. 
The result is a differential equation with respect to K 
or Ω. The equivalent scalar system, taking into 
account the components of the angular velocity 
about the principal axis of inertia becomes: 
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where J1, J2, J3 represent the gyroscope principal 
moments of inertia and  Ω1, Ω2, Ω3 the components 
of the angular velocity with respect to the same axis. 
 

2   Analysis of the prime integrals 
As we know, one of the classic solutions to the 
gyroscope motion equations is based on the 
determination of two square prime integrals, given 
by the energy conservation law and by the angular 
momentum conservation law, due to the absence of 
the external forces action. The prime integrals are 
the following: 
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The first one represents the equation of an ellipsoid 
whose semi - axis are 321 EJ2,EJ2,EJ2  and 
the second one the equation of a sphere having the 
radius K. The vector K will be at the intersection 
between the ellipsoid and the sphere. 
If we consider a constant energy level, meaning that 
the ellipsoid is fixed, we may change the sphere 
radius to find the intersection curves by Mathcad 
representation. 
Assuming there is the following condition between 
the main moments of inertia of the rigid body  J1 > 
J2 > J3, the semi - axis of the ellipsoid will respect 
the following 
relation: 2 2 21 2EJ EJ EJ> > .3  If the sphere 
radius K is shorter than the minimum semi - axis or 
longer than the maximum semi - axis, there will be 
no intersection between the ellipsoid and the sphere, 
so there are no motions characterized by such values 
of E and K. If the sphere radius is equal to the 
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minimum semi - axis the intersection consists of two 
points. The more the value of the radius increases, 
we obtain two curves around the extremities of the 
minimum semi - axis. Similarly, if the radius is 
equal to the maximum semi - axis, we find the two 
ends of the maximum semi - axis and for lower 
values of the radius K, we obtain two curves in the 
vicinity of these ends. Finally, if K EJ= 2 2 , the 
intersection consists of two circles which pass 
through the ends of the middle semi - axis. 
 
 
3   Mathcad representations of the 
equation solutions 
In order to allow the computer to generate the 
representations we need to provide some 
mathematical functions based on the analysis done 
in the previous paragraph. 
Thus, the plane projections of the solutions may be 
written: 
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where i, j and k are recurrence indexes and b(q) is 
given by: 
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In order to obtain the ellipsoid we use the following 
expressions: 
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where e(i .q) provides the unit vector variation in 
three dimensional space, expressed: 

( ) ( ) ( )[ ]Tqicosqisin0qie ⋅⋅=⋅              (11) 
while RX, RY are the rotation matrices 
corresponding to the coordinate axis. 
The sphere will be generated by help of the 
following relation (using (5) and (6)): 
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The intersections between the ellipsoid and the 
sphere, obtained for a certain interval of the 
recurrence indexes, were represented in Fig.1 using 
the functions in (8), (9), (10) and (12), as the 
possible positions of the angular moment vector. 
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Fig.1 

 
Then the cross-sections with the coordinate planes 
(determined by the intersection of the principal axis 
of inertia) were obtained and represented in fig.2, 
fig.3 and fig.4, to be able to visualize and emphasize 
the intersection points. 
This way, the stability of the solutions can be 
analyzed and matched with the theoretical 
approaches. 
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Fig.2 

 

Proceedings of the 2nd IASME / WSEAS International Conference on Continuum Mechanics (CM'07), Portoroz, Slovenia, May 15-17, 2007      81



2 0 2

2

22.2

2.2

r ,2 js

re ,2 ke ,2 i

2.42.4 ,r ,0 js re ,0 ke ,2 i  
 

Fig.3 
 
 

0

2.4

2.4

r ,0 js

re ,0 ke ,1 i

3.23.2 ,r ,1 js re ,1 ke ,1 i  
 

Fig.4 
 

Each of the six ends corresponding to the semi - axis 
of the ellipsoid is a trajectory of the Euler equation 
(1), that means a stationary position of the vector 
angular momentum K. 
 To each position corresponds a constant value of 
angular velocity vector which is directed towards 
one of the principal axis of inertia. For such a 
motion Ω is all the time collinear to K, so we can 
say that the rigid body is in fact rotating with a 
constant angular velocity around the axis of inertia, 
whose position remains fixed. This kind of motion is 
called stationary rotation.  
Now, the stability of the stationary solutions of the 
Euler equation can be discussed based on the 
representations above. Thus, for a small deviation of 
the initial condition towards the minimum and 
maximum axis of inertia, the trajectory will be a 
closed curve (see fig.3 and 4), while for a small 
deviation about the middle axis of inertia, the 
trajectory will be a large curve, which does not 
remain near the vicinity of the axis (see fig.2). 
 
 

4   Motion Simulation of Angular 
Velocity and Momentum 
As we already stated in the previous paragraph, for a 
stationary rotation, the angular velocity directed 
along one of the principal axis of inertia should 
remain collinear to the angular momentum.  
In order to demonstrate this we can also represent 
the motions of the vectors angular momentum K and 
angular velocity Ω about the reference system 
attached to the rigid body. If the magnitude of K is 
different from any value of the ellipsoid semi - axis, 
the motions will be periodical. 
Remember also, another theorem proven by Poinsot 
and stating that during the motion, the gyroscope 
ellipsoid of inertia is rolling without sliding on a 
fixed plane, which is perpendicular to the angular 
momentum vector determined about the space 
reference system. 
Considering the ellipsoid of inertia rolling on a fixed 
plane, and analyzing the positions of the studied 
vectors, angular velocity and angular momentum we 
can simulate their consecutive locations during the 
motion. 
Thus, the expression used to represent the motion of 
the angular velocity vector is: 

j3,ikj,i2k
rJ ⋅=Ω                           (13) 

We get the representation in fig.5, where the 
positions of the angular velocity are blue. 
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Fig.5 
 

The motion of the angular momentum vector will be 
expressed by help of 

j3,ikj,i2k
rK =                (14) 

In fig.6 the positions of the angular momentum 
vector are represented during the considered motion 
using the blue colour. 
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Fig.6 

 
A quick view upon fig.5 and fig.6 proves the 
statement we were trying to demonstrate, concerning 
the collinearity of the vectors angular velocity and 
angular momentum during a stationary rotation. 
 
 
5   Conclusion 
Solving the system of differential equations of the 
fixed point motion was a challenging task for many 
scientists starting with Euler. Now using Mathcad 
software, all the difficult mathematical equations 
and theories can be proven by representing and 
simulating the behaviour discovered by theory. 
Thus, the solutions of the equations were 
represented by help of the prime integrals 
discovered by Euler, using the intersection between 
their graphical form. 
Also, the problem of solutions stability can be 
visualized by obtaining the cross-sections along 
three different perpendicular planes (defined by help 
of the principal axis of inertia). 
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