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Abstract: - Taking into consideration that during the firing, the rocket-launching device system oscillates and 

these oscillations may have a negative influence on the unguided rocket firing precision, it is necessary to 

evaluate the parameter oscillation in order to set up a precise rocket-launching device. This study intends to 

calculate the oscillations of a rocket-launching device system during firing, by means of numerical 

calculations on a nonlinear differential equation system [1]. In order to evaluate the rocket-launching device 

system oscillations a scheduling algorithm consisting in numerical integrating a differential equation system 

defining the movement of the system during launch is used. 
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1   Introduction 
We use a rocket-launching device system that has 

the following components: the vehicle chassis (front 

side on the wheels, and back side on the blockage 

jacks) upon which is laid the launching device basis 

with the revolving support of the mechanism, the 

tilting platform (with the containers for the rockets) 

and the rockets (including the moving rocket) [1]. 

     The system, during the rocket launch, is a 

complex oscillating system. The system is viewed as 

a set of rigid bodies bound together by elastic 

elements. The system has a high freedom degree 

number leading to a complex study of the 

oscillations. To simplify the calculus, but without 

limiting the generality of the study, we consider the 

movement of the rocket-launching device system 

during firing being completely described by 6 state 

variables [1]: the rocket linear translation in the 

container’s guiding tube, s , two angles that define 

the tilting platform’s position (pitch and gyration 

oscillation), yϕ , zϕ , other two angles that define 

the vehicle chassis pitch and rolling motions, xγ , 

yγ , and the chassis center of masse oscillating 

vertical displacement, Sz . In this study all forces 

and moments acting on the rocket-launching device 

system during firing are taken into consideration.  

     The differential equation system [1] that defines 

the system’s oscillating movement, being so 

complex, doesn’t allow computing an analytical 

solution therefore we need to use a numerical 

solving. So, it was necessary to create a scheduling 

algorithm consisting in numerical solving a rocket-

launching device system’s movement equations by 

successive iterations. With each iteration the rocket 

translation is computed by means of the container 

guiding tube movement equation, of the tilting 

platform and of chassis angular oscillation 

equations, as well as of the chassis vertical 

translation equation. 

 

 

2 Scheduling algorithm used to 

calculate the launching device’s 

oscillations 
     The oscillations of the launching device are 

computed by numerical solving a differential 

equation system that describes the rocket-launching 

device system’s movement. Starting from the 

vectorial form of the equation system [1], by 

projecting upon convenient systems of axes, by 

using matrices transformations from a system to 

another system and by expressing the forces and 

moments present, the equation system will be 

brought to a scalar 18 equation system. 

     Six differential second-order equations from the 

whole 18 obtained, allow calculating the 6 variables 

that define the system Sz , xγ , yγ , yϕ , zϕ  and s , 

while the other 12 equations are used to calculate the 

connection forces and moments  RyF , RzF , RxM , 

Proceedings of the 2nd IASME / WSEAS International Conference on Continuum Mechanics (CM'07), Portoroz, Slovenia, May 15-17, 2007      49



RyM , RzM , xRΠ , yRΠ , zRΠ , xηM , x1pF , 

x2pF and pyF .  

      In order to pass from the second order to the first 

order differential equations, a series of additional 

variables will be aided (first order derivative from 

the basis variables, which represents linear or 

angular physical velocity): 

  ;svs &=     (1) 

; yy
ϕ=ωϕ &    (2) 

; zz
ϕ=ωϕ &    (3) 

; zv SSz &=     (4) 

; xx
γ=ωγ &    (5) 

 . yy
γ=ωγ &    (6) 

     The connection forces and moments can be 

developed using some functions, as follows:  

; ),,v,,,v(fF
yxSzzysRyFRy γγϕϕ ωωωω=       (7) 

; ),,v,,,v(fF
yxSzzysRyFRz γγϕϕ ωωωω=       (8) 

  ; ),,v,,,v(f
yxSzzysRxRx γγϕϕ ωωωω= MM      (9) 

  ; ),,v,,,v(f
yxSzzysRyRy γγϕϕ ωωωω= MM        (10) 

  ; ),,v,,,v(f
yxSzzysRzRz γγϕϕ ωωωω= MM        (11) 

  ; ),,v,,,v(fR
yxSzzysxRx γγϕϕΠΠ ωωωω=       (12) 

  ; ),,v,,,v(fR
yxSzzysyRy γγϕϕΠΠ ωωωω=       (13) 

  ; ),,v,,,v(fR
yxSzzyszRz γγϕϕΠΠ ωωωω=        (14) 

  ; ),,v,,,v(f
yxSzzysxx γγϕϕηη ωωωω= MM        (15) 

  ; ),,v,,,v(fF
yxSzzysx1pFx1p γγϕϕ ωωωω=        (16) 

  ; ),,v,,,v(fF
yxSzzysx2pFx2p γγϕϕ ωωωω=       (17) 

  . ),,v,,,v(fF
yxSzzyspyFpy γγϕϕ ωωωω=          (18) 

     The simultaneous equations, which allow 

calculating the oscillations of the launching device 

during firing, using the expressions of the forces and 

moments and of the additional variables, become: 

; ),,v,,,v(fv
yxSzzyssvs γγϕϕ ωωωω=&     (19) 

 ; ),,v,,,v(f
yxSzzys

yy γγϕϕϕωϕ ωωωω=ω&   (20) 

; ),,v,,,v(f
yxSzzys

zz γγϕϕϕωϕ ωωωω=ω&  (21) 

; ),,v,,,v(fv
yxSzzys

SzvSz γγϕϕ ωωωω=&    (22) 

; ),,v,,,v(f
yxSzzys

xx γγϕϕγωγ ωωωω=ω&   (23) 

; ),,v,,,v(f
yxSzzys

yy γγϕϕγωγ ωωωω=ω&   (24) 

  ; vs s=&                         (25) 

; 
yy ϕω=ϕ&                            (26) 

; 
zz ϕω=ϕ&                            (27) 

; vz
SzS =&                            (28) 

; 
xx γω=γ&                            (29) 

. 
yy γω=γ&                            (30) 

     A iterative approximation method is used to 

calculate the independent variables Sz , xγ , yγ , yϕ , 

zϕ  and s . Next, each system component is 

identified and extracted from the system (see fig. 1).  
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Fig. 1 The calculus diagram of the launching device  

     The scheduling algorithm of the launching 

device, shown in the fig. 2, consists in successive 

iterations, which are described following.  
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Fig. 2 The scheduling algorithm of the launching 

device  

First iteration 

The independent variables are s , yϕ , zϕ , Sz , xγ  and 

yγ  and the connection forces and moments RbxF , 

RbyF , RbzF , RbxM , RbyM , RbzM , xRΠ , yRΠ , 
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zRΠ , xηM , yηM  and zηM  have an initial value of 

zero. 

     The rocket displacement in the container guiding 

tube, s  is calculated at the moving rocket level. The 

connection forces and moments that act at the tilting 

platform: RbxF , RbyF , RbzF , RbxM , RbyM  and RbzM  

are calculated for all the rockets in the container. 

     The variables thus computed, are inserted in the 

tilting platform movement equations whose 

computation shows the evolution of the yϕ  and z ϕ  

variables, and of the connection forces and moments 

xRΠ , yRΠ , zRΠ , xηM , yηM  and zηM .    

     The independent variables of the rocket, the 

tilting platform levels and the connection forces and 

moments between the tilting platform and the 

vehicle chassis are used to calculate the chassis 

variables Sz , xγ  and yγ . The Runge-Kutta 

integration method will be used. 

Second iteration  

Knowing the independent variables s , yϕ , zϕ , Sz , 

xγ  and yγ  from the first iteration, the same 

algorithm as previously is used in order to obtain the 

results of the second iteration.  

     To analyze the algorithm’s convergence, a 

comparison between the successive iterations will be 

used. We notice that 5 ÷ 6 iterations are enough to 

obtain the results with acceptable errors. In order to 

reduce the calculus time, a modified version of the 

algorithm can be used: an initial calculus at rocket 

and tilting platform levels lead to the achievement of 

a good convergence of the results followed by a 

chassis level computation. In this case only 2÷3 

iterations are required. 

 

 

3 Numerical results 
The numerical application named ILANPRN [2], 

developed by the authors using the general 

mathematical model [1], and the scheduling 

algorithm presented above, allows calculating the 

oscillations of the rocket-launching device system.  

     Next, numerical results obtained by numerical 

integration of the differential simultaneous equations 

describing the dynamic behavior of the rocket-

launching device system are presented.  

     The 122 mm unguided rocket launching device is 

used with a container of 40 rockets.  

     Many simulations are computed in a single 

rocket firing case with the rocket in central position. 

The time history of state variables that describe the 

rocket-launching device system ( ,zS ,xγ ,yγ  ,yϕ  

,zϕ s  and s,,,,,z zyyxS &&&&&& ϕϕγγ ) are presented in fig. 

3-14. 

     We notice that the displacement Sz  of the chassis 

center of masse has an oscillatory evolution (fig. 3) 

having a 0.75 s oscillating period. The oscillating 

amplitude has the initial value of 1.6 mm, and after 

the first period decreases to 1 mm (62.5% from the 

initial amplitude). 

 
Fig. 3 Time history of the Sz  displacement  

     The chassis angle rotations xγ and yγ  have also 

a damped oscillatory time history (fig. 4 and fig. 5). 

Moreover, the oscillating period for xγ  (0.4 s) is 

smaller than for yγ  (0.8 s).  

 
Fig. 4 Time history of the rotation angle xγ   

 
Fig. 5 Time history of the rotation angle yγ   

     The xγ  oscillating amplitude is 0.18 degree 

whereas the yγ  oscillating amplitude is only 0.028 

degree leading to the conclusion that the rolling 

oscillation is more important than the pitch 

oscillation.  

    As regards the oscillations of the tilting platform, 

the rotation angle yϕ  (see fig. 6 and fig. 7) has 

larger period (0.5 s) and larger amplitude (0.8 
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degree) than zϕ  (0.2 s oscillating period and 0.04 

degree oscillating amplitude). So, we can say that at 

the tilting platform level, the main oscillation is the 

pitch motion ( yϕ ). 

 
Fig. 6 Time history of the rotation angle yϕ   

 
Fig. 7 Time history of the rotation angle zϕ   

     Fig. 8 presents the trajectory of the rocket center 

of masse during the launching. The evolution range 

starts from zero (initial position) to 3 m (rocket 

center of masse position when it leaves the 

launching device).  

 
Fig. 8 Time history of displacement s   

     Fig. 9-14 presents the time history of the linear 

and angular velocity for the main components of the 

rocket-launching device system. These evolutions 

were noticed to be similar to the corresponding state 

variables ( s,,,,,z zyyxS ϕϕγγ ).   

 
Fig. 9 Time history of the velocity Sz&   

 
Fig. 10 Time history of the angular velocity xγ&   

 
Fig. 11 Time history of the angular velocity yγ&   

 

Fig. 12 Time history of the angular velocity yϕ&   

 
Fig. 13 Time history of the angular velocity zϕ&   

 
Fig. 14 Time history of the velocity s&   

     Having the main movement elements of the 

rocket-launching device system identified during 

firing (rocket translation s , tilting platform angle 

rotation ϕ , chassis translation Sz  and chassis angle 
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rotation γ ), we are able to calculate the movement 

evolution for any point located on the launching 

device.  

     Also, we can consider other launching cases: 

single rocket launcher on any container position, or 

launcher of a two or more consecutive rocket range. 

     In order to estimate the oscillation influence on 

the stability of the flying rocket, and also the effect 

on the firing accuracy, we computed the evolution of 

the launching device (points from the container 

where the rocket has the last contact with the 

container). Fig. 15 presents the time evolution of the 

z coordinate of the central launcher point. Fig 16 

presents the pitch movement evolution for the same 

point in the case of the 4 rockets range launching. 

The two parameters shown have a dumping 

oscillatory evolution. 

 
Fig. 15 Time history of the launching point z 

coordinate  

 
Fig. 16 Time history of the launching point pitch 

movement  

 
 

4 Conclusion 
The evolution calculus of the rocket-launching 

device system state variables during firing 

sequences allows the evaluation of dynamic forces 

present at all levels of the launching device system 

component, and therefore the analysis of the 

dynamic behavior of the whole assembly system.  

Evaluating the oscillation parameters of a 

rocket-launching device system, of their influencing 

to the system stability during firing, such as the 

initial rocket flight condition, leads implicitly to 

evaluating the firing accuracy, a must in the design 

of a precise rocket-launching device system.  

     In conclusion, a rocket launching phase design 

needs to take into account the system oscillations. 

These oscillations can be computed by numerically 

solving a theoretical model [1], also confirmed by 

the experimental results which validate and lead to 

the improvement of the numerical scheduling 

algorithm. 
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