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Abstract: - This paper presents the development and exploitation of two mathematical models based on 
statistical methods and artificial neural networks for analyzing and predicting the thermal power of buildings 
connected to a substation supplied by a district heating system. Both models are able to accurately capture the 
non-liner dynamics of thermal power demand that depends on very different technical and subjective human 
factors. The two models are compared taking into account the correlation coefficient R as a performance 
criteria and are validated by evaluating the accuracy of the approximation for other experimental data than 
those used in modeling stage. Predicted and experimental values for each model are well matched and 
highlight the success of applying statistic and neural networks models in predicting thermal power demand of 
buildings. 
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1   Introduction 
The built environment  accounts for carbon dioxide 
emissions, hence buildings are critically important to 
climate change. District heating produces 
significantly lower emissions and greenhouse 
effects, compared to alternatives. Even when a large 
plant supplying district heating is using the same 
fuel as small decentralised boilers, air quality in the 
immediate proximity is still enhanced, due to better 
pollution control technologies [1]. 
 Actually, 144 district heating companies operate 
in Romania. Implementation of national strategies 
regarding district heating production and distribution 
is in progress. Financial support for numerous 
projects concerning rehabilitation and modernization 
of thermo energetic domain generated important 
investments. The recommended measures of the 
national program “District heating 2006 - 2009 
quality and efficiency” require institutional, 
technological, social, market and financial decisions 
that will reduce the consumption of primary energy 
sources with 10 millions Gcal per year. 
 One major area of saving energy and resulting 
financial expenditure is the ability to predict the 
thermal power consumption of buildings, in order to 
match supply to demand. Buildings are microcosms 
of complexity derived from the interaction between 
form and fabric, service plant, control systems, 

occupants, climate. Consequently, the forecast of the 
building thermal energy is a difficult task. 
 The objective of this work is to develop and 
analyze methodologies able to predict thermal load 
trend of buildings. The paper presents soft 
computing methods created for prognosis of daily 
space heating consumption using statistic and neural 
network models. Such models allow evaluating the 
heat load dynamics of users connected to a 
substation, a very important requirement for a 
saving energy management. Validation of the 
methods was performed by comparing the modeling 
results with acquired data via a monitoring system 
from the District Heating Company of the city of 
Iasi (Romania). 
 
 
2   Methodology for buildings thermal 
request simulation 
There will always be discrepancies between heat 
demand and heat supply with important 
consequences on wasted energy. Ideally, district 
heating companies have to match thermal requests 
with production, but without any information about 
the evolution in time of the heat demand, this is 
practically impossible. The problem is quite 
complicated, mainly because it involves objective 
and subjective factors.  
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 Theoretically, space thermal power demand of a 
building depends on climate characteristics, indoor 
air temperature and construction characteristics such 
as structural materials type, orientation, height, 
volume, external and internal area of walls, floor, 
roof, windows and doors etc. In the design stage, 
this is the only method to apply. The human factor 
generated by the different preferences on thermal 
comfort, the daily schedule of the inhabitants, the 
ability to pay the bills, can not be taken into 
consideration. Unfortunately, subjective factors can 
not be neglected, owing to their importance.  
 In Romania, unlike the other European countries, 
more then 50% of the apartments that were initially 
supplied from district heating systems are 
disconnected now and the process continues. The 
district heating companies supply thermal energy to 
blocks of flats with a lot of apartments that use other 
forms of energy, mainly gas for individual heating 
systems, and sometimes apartments without any heat 
sources. Accurate prediction of hourly space heating 
consumption profile by using only climatic 
parameters and construction characteristics will be a 
huge and in vain effort. Simulation models of 
thermal power dynamics of buildings based both on 
subjective and objective factors are the only to be 
considered satisfactorily. 
 Essentially, simulation involves four steps: 
problem analysis, model creation, numerical 
simulation, results analysis. Two models are 
presented in this paper: a statistical one and a neural 
network one.  
 The statistical model (SM) for predicting the heat 
load Q of buildings is nonlinear, according to the 
equation 
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where  are the outdoor and the indoor 
temperatures.   

O iT ,T

 Some terms of the statistical model were 
determined by using thermal resistance method 
based on the energy balance, similar with the terms 
used by R. Yao and K. Steemers [2] for their 
simulation model of load profile for space heating. 
For instance, the first two terms illustrate the heat 
transfer  through the building envelope 
calculated with the equation (2) that includes 
transmission losses through the area denoted S of 
walls, ceiling, glass, roof and transmission loss 
through the floor , 
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where R0 is the thermal resistance. 
 The third term represents the heat losses 
corresponding to the cold air infiltration through 
the building, namely  
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where V is the wind velocity. 
 The dynamic of the heat load is also influenced 
by  , the supply temperature at the exit of the 
substation. Another extra term   depends on 
the previous average outdoor temperature   and 
was also used by B. Bohm et all [3] in a simulation 
model for dynamic modeling of district heat 

consumers. The term  
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paper, indicates that the previous average fluid 
flow rate  has a direct effect on the heat load. A 
justification of this assertion is the observation that 
the heat transfer through the distribution pipes and 
radiators depends on the convection correlation 

aq

( )4 / 5Nu f Re= , therefore the heat load Q depends 

on the fluid velocity, in other words on the fluid 
flow rate . 
 The constants k1, k2, …k6  are characterisic for 
every building and may be estimated by regression 
analysis using the nlinfit function from Statistics 
Toolbox of MATLAB. 
 As an alternative to the statistical modeling of 
District Heating Systems, the neural network 
modeling was chosen because this methodology is 
an alternative to modeling physical and non-physical 
system with scientific or mathematical basis.  
 Neural networks (NNs) perform computation in a 
very different way than conventional computers. 
Neural networks are built from a large number of 
very simple processing elements, neurons that 
individually deal with pieces of a big problem. A 
processing element (called neuron) simply 
multiplies an input by a set of weights, and 
nonlinearly transforms the result into an output 
value. The power of neural computation comes from 
the massive interconnection among the neurons and 
from the adaptive nature of the parameters (weights) 
that interconnect them. 
 The neural networks architecture which is most 
frequently used in data fitting and non linear 
approximation consists of three layers: the input 
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layer, the hidden layer and the output layer. In the 
input layer, each neuron corresponds to an input 
parameter and in the output layer there is a neuron 
for each output parameter. In hidden layer, the 
number of neurons may vary. For neurons from 
hidden and output layers, the activation function and 
learning rule are chosen. 
 Multilayer feed forward neural networks offer a 
generous framework for modeling non linear 
phenomena. The neural network operates as a 
nonlinear mapping, parameterized by the weights 
and biases of its layers, which can be adjusted so as 
to fit experimental data, but without any physical 
meaning for the identified parameters.  
 As in the case of statistical modeling, the outdoor 
temperature, the wind velocity, the fluid flow rate, 
the supply temperature at the exit of the substation, 
the average previous temperature were chosen as 
inputs and this means that NNs has 5 neurons in the 
input layer. The output layer has only one neuron 
corresponding to the desired values of thermal 
power. 
 Some different NNs topologies were studied: 
feedforward networks typically trained with static 
backpropagation or generalized feedforward 
networks with one or two hidden layers and different 
numbers of neurons, sigmoidian or tanhsigmoid 
activation functions, different learning rules and 
number of epochs used for training the NNs. For 
each topology, the error criteria MSE (Mean Squared 
Error), NMSE (Normalised Mean Square Error), 
AIC (Akaike’s information criterion) and MDL 
(Rissanen’s minimum description length) were 
performed in order to evaluate general performance 
of the NNs. After that study case, a feedforward NN 
with backpropagation, one hidden layer with 27 
neurons, tanhsigmoid activation function was chosen 
and than trained for 3000 epochs.  
 The accuracy of the statistical and the neural 
network methods was appreciated by calculating the 
correlation coefficient (R). When R=1 there is a 
perfect correlation between measured and calculated 
values, but when R=0 there is no correlation.  
 
 
3   Numerical Simulation 
Two buildings denoted A and B, connected at the 
Iasi District Heating Company were chosen for the 
analysis of the models. The full access to the 
database of the consumers connected to the 
substation allowed to view the records for each 
parameter supervised. Values of the following 
parameters were acquired in the period 1st- 31st 
December 2006 with a sample rate of 5 minutes: 

• climate parameters such as outdoor 
temperature and  wind velocity; 

• parameters at the entrance of the building such 
as fluid flow rate, supply temperature, return 
temperature; 

• parameters at the exit of the substation such as 
supply temperature.   

 Based on the analysis of the measurements, data 
from six representative days were selected for the 
development of the statistical model. The 
coefficients k1, k2, …k6  from the eq. (1) calculated 
by regression are presented in Table 1, for each 
building. Measured values and calculated heat load 
with eq. 1 for building B is presented in Fig. 1. The 
thin line represents the measured data and the points 
represent the data obtained with the mathematical 
model. 
 
Table 1. Parameters of the statistical model.  

A B 
k1 -26.0198 -24.2840 
k2  -2.2271   -0.4998 
k3  -0.0031   -0.0025 
k4   0.9807    1.0983 
k5   1.6341    0.3400 
k6   0.1314    0.2510 

 
 While the daily forecast simulation does not match 
the measurements very well, the model pursues with 
accuracy the graph of the measured data. It should be 
noted that in the case B, the dispersion of the 
measured data is lower than in the case A. This 
observation is underlined by the values of the 
correlation coefficient: R=0.9516 for the building B 
compared with R=0.9127 for the building A (Table 
2). The outdoor temperature of the representative 
days varies from -60C to +110C. Maybe better results 
could be obtained by using different models for 
different domains of outdoor temperature. 
 
Table 2. Correlation coefficients for the statistical 
modeling 
 Building A Building B
R for model 0.9127 0.9516 
% error 7.42 4.78 
R - test for 2nd Dec 0.6440 0.8169 
R - test for 14th Dec 0.7675 0.8936 

 
 The SMs were tested using experimental data for 
other days not considered initially and the correlation 
coefficients are presented in Table 2. For building A, 
R values are less than those for building B as it was 
expected due to the % error high value of the model 
in the case of building A.  
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 Therefore, the statistical model can not be used to 
predict with high accuracy the thermal power request 
for any building and any conditions. Anyway, the 
statistical model performance is acceptable and 
recommended for a saving energy management of 
the DHS.  
 The results obtained after training NNs for the two 
buildings are good enough and the performance 
information criteria are very closely MSE<0.008, 
R>0.93, AIC<-120 and MDL< -130. The RMSE 
criteria of the NNs training for the two building are 
plotted in Fig. 3.  
 Once the NNs has been trained, the weights are 
then frozen, the testing set is fed into the network 

and the network output is compared with the desired 
output in order to validate the NNs performance. The 
R coefficients for NNs training and testing are 
presented in Table 3.  
 For building B, the variations in time of 
experimental data and NNs model output are 
presented in Fig. 2. 
 The graphs presented in Figs 1 and 2 are very 
similar and this fact is in concordance with the very 
good values for correlation coefficient (R>0.95), 
denoting a perfect match between experimental and 
calculated values.  
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Fig. 1. Calculated values (♦) using statistical model and experimental data (—) for building B. 

 

0 1 2 3 4
20

25

30

35

40

45

50

55

time [days]

 T
he

rm
al

 p
ow

er
 [k

w
]

 
Fig. 2. The output of the trained NN (♦) and experimental data (—) for building B. 
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Fig. 3. The RMSE criterion of the NNs training: 

(—) for building A and (—·) for building B. 

Table 3 Correlation coefficients for NNs modeling 
 A B 
R for training 0.93 0.97 
% err for training 4.87 3.68 
R - test for 2nd Dec 0.87 0.88 
R - test for 14th Dec 0.83 0.92 

 
 For building A, on the 2nd of December, the 
experimental and the predicted values in the test 
process of the two models are presented in Fig. 4.  
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Fig. 4. The prediction with NNs (o), SM (*) and experimental data (—), 2nd Dec. 2006, building A. 
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Fig. 5. The prediction with NNs (o), SM (*) and experimental data (—), 14th Dec. 2006, building B. 
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 It can be easily seen a better correlation between 
measurement and predicted values for the NNs 
model. For SM, the dispersion between predicted 
and experimental data is great as it was expected, 
because the value of R is only 0.76.  
 Figure 5 shows the plots of predicted and 
experimental values for building B, obtaining by 
testing statistical and NNs model for the 14th of 
December. In this case the best predictions were 
obtained. 
 The comparative approach for the two models 
highlights the superiority of NNs models vs. 
statistical ones in prediction of thermal power 
request. But the usefulness of SM couldn’t be 
neglected, as very good results were obtained with 
such a model in some conditions and for some 
consumers. It might take into account that some 
unsatisfactory results could come from inherent 
data acquisition errors with the framework of 
monitoring system. The studies carried out might 
be extended to others buildings and other periods 
of time with large variations of outdoor 
temperature and wind velocity, because the period 
for which experimental data were available, was 
characterized by very mild weather.  
 
 
4   Conclusions 
The aim of this paper is to develop a methodology 
for predicting the thermal power demand of 
buildings in any conditions. The technical and 
human factors that influence the heating system are 
very different and that is why no one analytical 
mathematical model may be considered for this 
purpose. For this reason, two models describing the 
dynamic of thermal power request are proposed and 
validated – a statistical one and an artificial neural 
networks one.  
 The development of the two models is based on a 
series of representative experimental data selected 
from the database of a global monitoring system 
designed and implemented for supervising the 
behavior of the DHS of Iasi (Romania). Accuracy of 
the computer simulation, as shown by the agreement 
between the modeling and experimental test results, 
depends on the accuracy of acquiring the values of 
the following parameters: outdoor temperature, wind 
velocity, supply temperature at the exit of the 
substation and at the entrance of each building 
supply fluid flow rate, temperature and return 
temperature. The data for six different days, 
covering a wide range of values, were chosen for 
training the NNs and for determining the 

coefficients from eq. (1) using statistical methods. 
The proposed models were studied for two 
buildings. 
 Both models led to good correlation coefficients 
(R>0.9) for the six days initially considered. The 
comparison of the two models shows that NNs 
model is better, because R values are higher for both 
buildings. In the case of NNs models, for both 
buildings, the error is less than 5%, denoting that 
errors introduced by data processing in models 
construction do not exceed the inherent errors 
resulted from data acquisition.  

The validity of NNs models was verified with 
very good results using experimental data for other 
days not considered initially. The statistical model 
describes well enough the dynamic of thermal load 
for any building studied but offers poor results 
regarding the prediction for different data 
collections.  

Considering all above, it could be summarized 
that NNs models represent a very powerful and 
useful tool for prediction of the thermal power 
request if predictions for outdoor temperature, wind 
velocity and supply temperature at the exit of the 
substation are available. NNs models allow a unified 
approach that represents the background for 
optimization and a global prediction for the whole 
thermal power request of a substation from a DHS 
supplying a group of monitored buildings. 
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