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Abstract: - The goal of this work is to extend finite volume schemes to the hyperbolic balance laws with 
geometrical source term. Mixed regions of flow are considered when a super-critical to sub-critical transition 
takes place and hydraulic jumps occur. In this work, the shallow water equations are used to solve the open-
channel flow. The equations are converted to discrete form using cell centre finite volume method for 
triangular unstructured meshes. For obtaining stable numerical solution, the biharmonic operator that can be 
computed in some certain computational stages, but its value adds to the equations in all computational steps. 
For preventing excessively long run times, local time stepping is used, whereby the computations on 
individual cells are advanced by their own maximum allowable time steps. Using cell center finite volume 
method for discrete formulations, proper algorithm is adopted for accurate numerical solution by considering 
grids, boundary conditions transferring information between nodes and centeroids of cells. 
The accuracy of the computed results is validated by modeling mixed sub and super critical flow in a channel 
with variable bottom elevation and width. Comparison of the computed water elevation with analytical 
solution obtained from the theoretical solution for the frictionless free surface flow shows encouraging 
agreements. 
 
Key-Words: - Cell Center Finite Volume Method; Shallow Water Equations; Open-Channel Flow; 
Unstructured Triangular Mesh 
 
1 Introduction 
A number of problems can be identified with the 
software currently available, and as a result, research 
continues into developing better numerical 
techniques for computational hydraulics. There has 
been a growing trend in favor of Riemann based 
methods constructed within the finite volume 
framework. However, the computational cost of 
employing this algorithm can lead to excessively 
long run times, particularly when higher order 
mathematical models are used. This often is as a 
result of stability constraints placed upon explicit 
schemes, which require the smallest possible time 
step permitted throughout the grid, to be applied 
globally. 
The application of faster and more accurate 
numerical methods is considered by researchers 

therefore one possibility for improving this situation 
is to use local time stepping, whereby individual 
cells are advanced by their own maximum allowable 
time steps. To incorporate this concept into a 
transient model requires the development of a 
suitable integration strategy, to ensure that the 
solution remains accurate in time. Many techniques 
are available for numerical simulation work, such as 
Finite Difference methods (FDM), Finite Element 
methods (FEM), Spectral methods and Finite 
Volume methods (FVM). Within the context of open 
channel flows, earlier worked focused on the 
application of finite difference schemes and to some 
extent the finite element method. 
There are numerous finite difference schemes for 
spatial discretisation. They can be divided into two 
broad categories; central difference schemes and 
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upwind schemes. Central difference schemes have 
higher order accuracy but more restrictive stability 
requirement and tend to generate spurious 
oscillations. Upwind schemes on the other hand are 
generally more stable due to inherent dissipation 
effects at the price of lower order accuracy. 
In more recent studies, finite volume method has 
become the more popular approach for general fluid 
flow problems. This method is based on the integral 
form of the conservation equations [27].  
Several techniques have been published in the 
literature concerning the use of the finite volume 
method to solve the two-dimensional (2-D) shallow 
water equations to model free surface flows. Zhao et 
al. [28,29] used three-types of Riemann solvers, 
including the flux vector splitting, the flux 
difference splitting and the Riemann solver of Osher 
and Solomone [21]. 
Anastasiou and Chan [1,3] developed a finite 
volume scheme based on a Godunov-type second-
order upwind formulation to solve incompressible 
flows, both with and without a free surface and 
using an unstructured triangular mesh. Mingham and 
Causon [19] developed a high resolution finite 
volume scheme using a MUSCL reconstruction and 
with a slope limiter to capture surface 
discontinuities. Their model was applied to simulate 
bore wave diffraction in both internal and external 
hydraulic flows. More recently Lin et al. [16] have 
proposed an algorithm based on the flux-splitting 
technique. The algorithm was established by 
modifying the MacCormack scheme to preserve 
second-order accuracy of the numerical algorithm. 
Nelida Crnjaric _Zic and Senka Vukovic [20] 
proposed the Balanced finite volume WENO and 
central WENO schemes to solve selected test case 
that discussed later. 
WENO (Weighted Essentially Non-Oscillatory) 
schemes are based on the ENO (Essentially Non-
Oscillatory) schems of Harten (1983) [7] and Harten 
et al (1987)  [8]. 
The key idea of ENO scheme is to use the smoothed 
stencil among several candidates to approximate 
flux at cell boundaries )21( ±i  to high order and at 
the same time to avoid spurious oscillations near 
shocks or discontinuities. WENO schemes take one 
step further by taking weighted average of the 
candidate stencils. Weights are adjusted by local 
smoothness. More details can be found in Liu et al 
(1994)[15], Jiang and Shu (1996)[11], Jiang et al 
(1999)[12] and Shao et al (2004)[23]. 
Vaserio Caleffi, Alessandro Valiani and Andrea 
Zanni, (2003)[26], developed 2D computer code for 
solving , flow in a channel with variable height. 

Their algorithm was obtained through the spatial 
discretisation of the shallow water equations by a 
cell center finite volume method, based on the 
Godunov approach. The Harten, Lax and Van Leer 
(HLL) Riemann solver was used. A second order 
accuracy in space and time was achieved, 
respectively by MUSCL and predictor–corrector 
techniques. The high resolution requirement was 
ensured by satisfaction of TVD property.  
In this paper, accurate and efficient of the cell center 
finite volume solution by computation of fluxes at 
boundary of the triangular control volume using the 
variables at centroids of two adjacent cells. 
Particular attention was posed to the numerical 
treatment of source terms for solving steady flow in 
a channel with variable bed topography and channel 
width is considered. In order to handle the variable 
geometry of the flow field, unstructured triangular 
mesh has been deployed to cover the solution 
domain. A test case of trans-critical flow in a 
frictionless channel with variable geometry [17] is 
chosen to check the developed flow solver. 
 
 
2 Governing Equations 
The hydrodynamic module is based on the solution 
of the two-dimensional Shallow Water Equations 
(SWE), whit assumption the incompressible water, 
described as: 
 
 
2.1. Conservation of Mass and Momentum 
This property of SWE was accurately investigated in 
several works; for a review, look at Toro [24] and 
Morris [18]. Theoretical bases of the SWE theory 
may be found in Liggett [14] and Chaudhry [4]. 
Cunge et al [5] (see also [9]). 
The dependent flow variables in such equations are 
the flow depth (h) and the x and y components of the 
unit discharge (hu and hv), related to the 
corresponding vertically averaged flow velocity 
components (u and v). 
 
2.1.1. Conservation of Mass: The law of 
conservation of mass states that mass can neither be 
destroyed nor created, but it can only be transformed 
by physical, chemical or biological processes. All 
mass flow rates into a control volume through its 
control surface is equal to all mass flow rates out of 
the control volume plus the time change in mass 
inside the control volume. 
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2.1.2. Conservation of Momentum: It describes the 
motion of a flow particle at any time at any given 
position in the flow field. 
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Where, t: time; x and y horizontal Cartesian 
coordinates, g: gravitational acceleration. The 
complex turbulence effects are not included in the 
equations. 
The shallow water equations are written in 
conservation form. One of the more common forms 
of the equations encountered within the literature is 
written as: 

[ ThvhuhQ = ]                                                (1) 
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where  is the flux vector 
and  is the source term as: 
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The parameter bzh +=η  indicates the water 
surface level. 
 
 
3   Boundary and Initial Conditions 
Careful treatment of the boundary conditions is 
essential in order to avoid unwanted numerical 
phenomena, such as artificial boundary layers, 
unstable discretisations and numerical diffusion, and 
to approximate the physical flow as well as possible. 
Various types of boundary conditions are specified 
in the numerical model for flow and wall boundary 
conditions. 
For internal sub-critical flows distinction between 
inflow and outflow boundaries may prevent 
computational conflicts. Following implementations 
are made at inflow and outflow boundaries. 
At inflow boundary nodes, the components of the 
free stream velocity, u and v, are specified and the 
depth, h, is extrapolated from the inside domain.  
At the outflow boundary nodes, the depth, h, is 
imposed and the velocity components, u and v, are 
extrapolated from the interior nodes of domain [6]. 
For wall boundary, free slip condition is 
implemented by setting the component of the 
velocity normal to the wall boundary equal to zero. 

0)ˆ.( =wnU  in which U  is velocity vector and n  is 

the normal vector perpendicular to the wall 
boundary. 

ˆ

 
 
4  Numerical Formulation  
An important factor in applying numerical 
techniques is the question of grid generation. 
An unstructured triangular mesh has been deployed 
to cover the solution domain and enable arbitrary 
and complex geometries to be replicated. 
In a finite volume cell centred grid, each triangle is 
considered as a control volume and the computed 
variables are considered to locate at its centroid, so 
that the number of unknown vectors is the same as 
the number of elements or triangles. 
The finite volume method is based on writing the 
mathematical model equations in integral form over 
an elementary control volume. Each elementary 
volume is represented by a cell of the mesh, used for 
the discretisation of the simulated domain. 
Equation (2) can be integrated over the cell volume 
Ω as: 

∫∫ ∫ ΩΩ Ω
Ω=Ω⋅∇+

∂
∂ dSFddydx

t
Q ..                       (3) 

The continuity and the momentum equations are 
integrated over each control volume. Application of 
the Green's theorem to the integrated continuity and 
momentum equation result are: 

[ ] tSdxGdyEtQ i
i
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Where iΩ  and Γ are the area and boundaries of the 
control volume, respectively.  
The integral discretisation of the flux through the 
whole surface boundary of the control volume is 
obtained by the introduction of a sum, over the tree 
sides of each element and describe as: 
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Where  is the known value of Q while,  is 
the value of Q to be computed after . S is body 
forces of two equations of motion and equal to zero 
for continuity equation.  

nQ 1+nQ
tΔ

The parameters E  and G  are the averaged values 
of the fluxes in x and y spatial derivatives in each 
centre at the two side boundary edges of the control 
volume (Figure 1). S is the known values of 
parameters in right hand of equation 2 and equal to 
zero for continuity equation. 
The special derivatives of source terms (which 
present water surface level  gradients in x and bzh +
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y directions at cell centroids) are computed over 
triangular control volumes using following formula: 

∑
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Having computed these gradients, the computations 
of the source terms are completed by multiply them 
to hg  at cell centeroids. 

xS  and  is derivatives of source terms in x and y 
direction that consist effect of bed topography and 
depth average hydrostatic pressure. 

yS

 

 
Fig. 1. Cells centroids of a control volume edge  
 
However for the boundary (wall, inflow and out 
flow) edges in which the boundary conditions are 
imposed at their two end nodes, the fluxes are 
estimated using the variables at those nodes. For the 
other interior edges of the boundary cells, the effect 
of imposed boundary conditions at the boundary 
nodes are transferred to the cell centroids using 
weighted average reconstruction technique. Hence, 
before proceeding to the next time-step, all 
boundary variables ( ) at centroids 
are updated, using following relation (Figure 2).  
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Fig. 2. Weighted average values of flow variables at 

a cell centroid 
 
To prevent costly reconstruction of flow variables at 
computational nodes, the computed variables at cell 
centroids on two sides of the edges are averaged for 
estimating fluxes at control volume boundary edges. 

In order to preserve the accuracy of the flux 
estimation by averaging, nearly non- stretched 
triangular meshes with (see Figure 1) are used 
in this work (Figure 3). 

ba ≈

 

 
Fig. 3. variables on nearly non- stretched cells 

 
It worth noting that, at the first time step the flow 
variables ( [ ]ThvhuhQ = ) for all centroids are 
transferred from the initial condition at 
computational nodes using the above mentioned 
weighted averaging formula for boundary cells. 
 

 
5 Artificial Viscosity 
For reducing computational efforts, the biharmonic 
operator can computed in some certain 
computational stages, but its value adds to the 
equations in all computational steps.  
In order to stabilize the explicit solution procedure 
by damping out the numerical oscillations, a 
biharmonic artificial viscosity formulation can be 
added to above formulation. Considering the 
convictive fluxes as, 

∑=
Δ⋅−Δ⋅=

3

1
)()(

ii xGyEQC  the fourth order 

artificial dissipation term, 

∑ =
∇−∇=

3

1
22 )()(

j ijiji QQQD λε  can be added 

to the aforementioned algebraic formulation. The 
scaling factor ijλ  is computed using the maximum 
central values of λ  at the centre of neighbor cells 
that connected to the centre of the i control volume. 

λ  is evaluated by ( )2222
ˆ.ˆ. yxCnUnU Δ+Δ++=λ , 

where hgC =  wit g is the gravity acceleration. 

Here,U  is average central computed velocity at two 
neighbor cells that are common in edge for example 
edge a-b in Fig 1 and  is normal vectors at 
boundary edges of control volume Ω , respectively 
result in 

n̂

xvyunU Δ−Δ=ˆ. . Depending on the sizes 
of grid spacing, the coefficient of the artificial 
dissipation term, ε  should be tuned to the minimum 
required value ( 256/3256/1 ≤≤ ε ) for the applied 
mesh. 
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The algorithm for computation of artificial 
dissipation term is adopted for the unstructured 
mesh. Here, the Laplacian operator at every cell 
centers i, , is computed 

using the variable Q at centroid of desired cell i and 
centroids of its all neighboring cells j.  

∑ =
−=∇

3

1
2 )(

j iji QQQ

Finally, the revised fin 
ite volume formula, which preserves the accuracy of 
the numerical solution, is written in the following 
form [10]. 
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6 Time Stepping 
For every control volume,Ω  in computational 
domain, the time marching limit is specified as: 

λ
Ω

=Δ )(CFLt                                                         (8) 

Where, parameterλ  represents the maximum central 
values of Eigen-Values of Jacobin matrix of the 
convective dominated form of the equations at all 
centre of neighboring cells of the control volume 
and  is the control volume’s area. The Courant-
Fredrish-Levy number ( ) is evaluated by the 
stability condition for explicit computation 
procedure. Since we are dealing with unstructured 
meshes, the size of control volumes varies over the 
computational domain. Therefore, every control 
volume has its own time step, . 

Ω
CFL

tΔ
Kleb, Batina and Williams [13] presented a local 
time stepping technique for the Euler and Navier-
Stokes equations on unstructured meshes. 
The method was demonstrated through model 
validation, when supercritical to sub-critical flow 
transition problem is considered. Results for this test 
was good. 
At final computational time marching, in order to 
define the flow variables ( ) at 
computational nodes, the values at centroids are 
transferred to the nodes using following relation 
(figure 4). 
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Fig. 4. Weighted average values of flow variables at 

a computational node 
 
 

7 Model Validation 
 
7.1. Test case1 
The results of three tests on a channel are presented 
in this section. The aim of these test cases is to study 
the ability of the code to correctly represent the sub-
critical, trans-critical and critical transition flow over 
a bump in a channel with variable height. For all 
three tests the channel geometry and flow conditions 
are the same as those are used by previous numerical 
workers [20, 25, 26]. The spatial domain is 
represented by a 25×1m rectangular cross section 
channel. The frictionless bottom elevation ( ) of 
the channel is described by the following function: 

bz
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The geometry of the channel and utilized 
unstructured mesh is plotted in following figure(5). 
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(b) 

Fig. 5. The channel bed level (a) and bottom mesh 
colored by z (b) 

 
7.1.1. Sub-critical flow over a bump 
This test computes a transient flow, which tends to 
become a steady sub-critical flow. The imposed 
flow conditions at boundaries are smqin

242.4=  
and mhout 2= . Figure 4 represents the computed 
water levels. Results of the developed model are 
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very close to the exact solution and the results of the 
previous numerical workers [20, 25, 26]. 
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Fig. 4. Water elevation in sub-critical flow  

 
7.1.2. Trans-critical flow over a bump 
This test case forms a condition of sub-critical flow 
upstream of the bump and a supercritical flow 
downstream of the bump. The imposed conditions at 
flow boundaries for this test are 

smqin
253.1= and . mhout 66.0=

Figure 5 shows acceptable result of the present 
algorithm for solution of trans-critical steady flow in 
comparison with the exact solution and the results of 
the previous numerical workers [20, 25, 26]. 
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Fig. 5. Water elevation in trans-critical flow  

 
7.1.3. Critical transition flow over a bump 
For the third test, the upstream flow is considered 

smqin
218.0= and the downstream level is set 

equal to . The analytical reference 
solution is obtained by application of Bernoulli’s 
theorem. 

mhout 33.0=

Figure 6 shows a good agreement between the water 
profile, given by the analytical solution, the 
described numerical solution. 
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Fig. 6. Water elevation in critical transition flow:  

 
7.2. Test case2 
Steady flow in a channel with variable height and 
width is considered for testing the efficiency of the 
presented numerical scheme. The geometry for this 
test problem is taken from [17]. 
Hubbard and Garcia-Navarro [17] solved this test 
case using a complicated finite volume method. The 
channel bottom elevation and width are defined as 
(see Fig. 7). 
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Fig. 7. The channel bed level (a) and bottom mesh 
colored by z presenting width variations (b) 

 
For this test, the inflow discharge is considered as 
1.88 m3/s and the water depth of 1 m on downstream 
boundary is considered. Due to the variable bed 
elevation and width of the channel super-critical 
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flow forms at the point of the maximum contraction 
(which corresponds to the maximum bottom 
elevation), and then, it returns to the sub-critical 
regime. Therefore, at the critical point, a hydraulic 
jump forms down-stream of the bump. 
The analytical reference solution of this case is 
obtained by application of Bernoulli’s theorem [2]. 
Figure 8 shows the comparison of the results of the 
present flow solver with the analytical solution and 
the results of the previous numerical workers [17, 
20]. 
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Fig. 8. Comparison of the numerical results, 

analytical solution and Previous Workers [17]. 
 

 
The comparison show encouraging agreements 
between the water level, given by the analytical 
solution, and the results of the present numerical 
algorithm. 

 
Fig. 9. Computed water surface and channel bottom  
 
 
4   Conclusion  
In this paper, a reconstruction free cell center finite 
volume algorithm for triangular unstructured 
meshed is introduced for solving convection 
dominated shallow water equations. In order to 
damp out the numerical noises associate with the 
explicit solution of the convective dominated 

(frictionless) flows, an artificial dissipation operator 
suitable for unstructured triangular meshes is added 
to center finite volume formulation.   The accuracy 
of the algorithm a comparison between analytical 
solution and numerical results, obtained from the 
present finite volume algorithm, is presented. 
In spite of the light computational work load of the 
present finite volume solver, its results its in close 
agreements with the exact solution of sub, super and 
trans-critical flow cases which are tested by costly 
numerical methods of the previous workers that 
mentioned above. 
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