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Abstract: A depth averaged numerical model is developed to solve super critical free surface flows 
in canals with steep slope in certain direction is introduced in the present paper. The model consists 
of depth averaged equations for flow on surface with steep slope toward one of the main horizontal 
axes of Cartesian coordinates. The depth-averaged form of the flow equations converted to discrete 
form for unstructured meshes using the cell vertex finite volume method. Therefore, the horizontal 
mesh is firstly transformed into inclined coordinate system. Then the discrete formulations are 
solved on the transformed mesh. Having computed the velocity vector parallel to the bed surface 
and flow depth perpendicular to the bed surface, the model computes three components of the 
velocity in Cartesian coordinate system as well as the water depths parallel to the z axe in vertical 
direction. The developed model is utilized for simulation of various flow regimes in prismatic 
canals, which have two different constant bed slopes in certain direction. The numerical results 
present the ability of the model to simulate very high speed super-critical flows in very steep bed 
slopes. Finally, application of the developed model on simulation of sub and super critical flow 
from reservoir to steep chutes and ski jump flip bucket spillways of SEYMAREH in KHOSESTAN 
province of IRAN produced encouraging results by of  computation of three dimensional velocity 
patterns and shock waves. 
 
Key words: Computing Velocity Profile, Numerical Simulation, Depth Averaged Flow, Steep Slope 
Chute Spillway. 

1 Introductions 
The chute spillways mostly have steep 
slopes in a certain direction. In the chute 
spillways, the velocity field of the super 
critical flow forms parallel to the bed 
surface. Although the negligible velocity 
component normal to channel bed validates 
the hydrostatic pressure distribution in flow 

depth, the set of common shallow water 
equations (SWE) is not suitable for 
simulating most of the real world spillway 
flow cases because of mild bed slope 
assumption for derivation of this 
mathematical model. Therefore, casting 
these equations for steep slopes may help 
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overcoming the problem. Such a modified 
set of shallow water equations can be 
developed by rewriting the depth averaged 
equation in a slopping frame of reference 
using flow depth normal to the bed surface 
and two velocity components parallel to the 
bed surface.   
In the present work, a finite volume model 
suitable for the triangular unstructured mesh 
is used for solving the mathematical model. 
Proper artificial viscosity terms are added to 
the formulations to stabilize the explicit 
solution procedure in the convection-
dominated flow regions. Formulations of 
these additional terms are designed for 
solving on unstructured meshes in such a 
way that not only damp out unwanted 
numerical oscillations but also preserve the 
accuracy of the solution. In addition, proper 
numerical techniques are adopted for 
increasing the efficiency of the computation 
on unstructured meshes. 
Having solved the depth averaged velocity 
field parallel to the bed surface, the velocity 
profile in flow depth can be computed using 
empirical relations suggested for super 
critical flow chutes. 

2 Literature Review 
Among the various mathematical models, 
the set of shallow water equations (SWE) 
for simulating various types of flow regimes 
has been received great attentions for 
modeling super-critical flows.  
Hence, many numerical workers focused on 
solving SWE for super-critical flow 
[1,2,3,4]. For example Jimenez et al were 
simulated super-critical flows using SWE 
(Shallow Water Equations) on structured 
grids. In their model, finite difference 
scheme was utilized considering mild 
channel slope and bed friction effects [5].  
Some numerical workers used shallow water 
equations as a mathematical model for 
simulation of spillway flows. For example, 
Unami et al, used SWE for flow over a 
spillway on unstructured triangular domain. 
They utilized finite element and finite 
difference methods for discretizing the 
governing equations [6].  

3 Mathematical Model 
The shallow water equations have a wide 
application for solving many types of two-
dimensional flow problems. The main 
assumption for using shallow water 
equations is hydrostatic distribution of 
pressure, which means there is no significant 
velocity component in vertical direction. 
The standard shallow water equations 
assume the channel bed is horizontal or its 
slope is mild. Such a depth average 
mathematical model best suits the flow 
characteristics of super critical flow on a 
mild slope [7].  
In this work, a version of shallow water 
equations is introduced for two dimensional 
depth averaged flow on an inclined surface 
with assumptions hydrostatic distribution of 
pressure figure 1. This assumption implies 
negligible velocity component in normal to 
the flow plane. In the model, common 
assumptions for practical open channel 
water flows, like incompressibility, 
negligible wind stresses and earth rotation 
effects are considered as well.  
The mathematical model is cast for solving 
supercritical flow in a chute canal with a 
slope α in a certain direction (in which the 
bottom elevation variation plays important 
role in forming flow patterns). In this model 
the set of depth averaged equations is 
modified to describe super-critical flow in a 
coordinate system with an axe normal and 

two axes of x* ( αCosxx /* = ) and y 
parallel to the bed surface. 
The set of governing equations contains an 
equation of continuity and two equations of 
motion in y and x* directions as follow.  
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Where, t  is  time, u* is velocity component 
along x* (in x-z plane) which has α angle x 

( αCosuu /* = ), while v is the velocity 
component along y and h* is the flow depth 

normal to the bed surface ( αhCosh =*
). 

Here, Zb is bed elevation, g is the gravity 
acceleration. The global dissipative forces 
can be defined as, 
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Where, Cf represents the effective global 
dissipative coefficient0. 
The effects of gravitational force to the 
water body in x/ direction is introduced 
using the local bed slope (bed elevation 
gradient) in terms of: 

** xZghSinW b ∂∂=α , in the above 
equations. This term plays an important role 
in formation of flow patterns. 
Using αη CoshZb /*+= , the above 
mentioned depth averaged equations of 
motion is reduced to the following from 
[11].  
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Having computed the velocity vector 
parallel to the bed surface and flow depth 
perpendicular to the bed surface 
numerically, three components of the 
velocity in Cartesian coordinate system as 
well as the water depths parallel to the z axe 
in vertical direction can be computed as , 

αCoshh /* = , αCosuu *= , vv = ,
αSinuw *= (4)    

Note that, by omitting the superscripts * 
from the above equations of continuity and 
motion, will make them similar to the 
standard form of shallow water equations 
(SWE), and hence similar numerical 
procedure can be applied for the solution 
[8]. Therefore, similar equations can be 
allied for the sub-critical parts of the 
solution domain (in which the water surface 
elevation variation plays important role in 
forming flow patterns), by considering; 

1=αCos  and 0=αSin .

4 Numerical Solution Algorithm 
The cell vertex finite volume method is 
applied for discretization of governing 
equations. Hence, the above partial 
differential equations can be solved on 
triangular unstructured meshes, which 
generated applying Delaunay triangulation 
method in a coupled manner using the 
algorithm developed for the compressible 
flow problems [9]. 
In this method, the domain is divided into 
triangular sub-domains (control volumes), 
which is formed by triangles meeting every 
computational node, and then the governing 
equations are integrated over each sub-
domain. The equations of continuity and the 
motions are integrated over each control 
volume. Application of the Green's theorem 
to the integrated equation in general form 
result is: 

( ) ∫∫∫
ΩΓΩ

Ω=−+Ω
∂
∂ dSGdxFdyd

t
W

(5)

Where iΩ and Γ are the area and boundaries 
of the control volume, respectively. W 
represents time dependent terms of above 
equations while, F and G represent x and y 
fluxes, respectively. S is the sink/source 
term of the equation. Its value equals to zero 
for the continuity equation and equal to 
global forces for two equations of motion. If 
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nodal values of dependent variables at each 
triangle vertex are taken as the unknowns at 
the central node of the control volume, the 
discrete explicit form of the equation is 
evaluated by conversion of the boundary 
integral into the summation over m edges of 
the control volume, as 

n
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Where Wn+1 is the value of Wn to be 
computed after t∆ . The parameters F and 
G are the average values of the fluxes in x 
and y spatial derivatives in each edge at the 
boundary edges of the control volume [10]. 
Note that, x∆ and y∆ should be computed 
using transformed coordinate in x* direction 
in sloping supercritical parts of the solution 
domain. 
Explicit solution of the convective equations 
where the global dissipative terms are 
negligible, some numerical oscillations grow 
particularly near the high gradient regions. 
These numerical noises disturb the solution 
procedure in the cases with small physical 
dissipation mechanisms. For the flow 
problems with gradual changes in dependent 
variables (flows with no shock waves), the 
fourth order term (Biharmonic operator) 
produces enough dissipations to damp out 
the numerical oscillations and stabilize the 
explicit solution procedure [9]. 
Time marching of the explicit computations 
( t∆ ) should be proportional to the speed of 
wave propagation of the applied convective 
equations. This speed can be computed 
using, λ the maximum Eigen values of 
Jacobin matrix of homogonous form of the 
set of governing equations. Since we are 
dealing with unstructured meshes, the size 
of control volumes varies over the 
computational domain. Therefore, every 
control volume has its own time step, it∆ .
Hence, the speed of explicit computations is 
limited to the minimum min)( t∆ in the 
unsteady flow field. Although the values of 

the time step, it∆ for every control volume 
vary during the stages of the numerical 
solution, it may approach to certain values 
when the computations converge to the 
steady state conditions. 

5 Imposing Velocity Profile 
Several logarithmic relations could be 
applied to obtain velocity distribution in 
flow depth. Prandtl-Von Karman is known 
as one of the most important relations for 
attaining this purpose, as [12]. 

0

* ln5.2
y
yVv = (7) 

In the above relation v is flow velocity in y
depth and v* stands for shear velocity in 
which can be calculated from the following 
relation: 

 
ρ
τ 0* == gRSV (8) 

For turbulent flow over smooth surfaces, if 
the bed surface is hydraulically smooth, 0y
can be obtained using, 

*
0 u

my υ= (9) 

In the above relation, m is a constant 
coefficient equal to 1/9 for smooth surfaces. 
Using above mentioned relation for 0y ,
velocity magnitude in flow depths can be 
calculated to the following relation [13] 
 

υ
** 9ln5.2 yuVv = (10) 

For turbulent flow over rough bed, 0y
depends on bed roughness and can be 
calculated by following relation (11). 
 

smky =0 (11) 
Here, sk is the bed surface roughness in 
terms of equivalent sand roughness and the 
value for m is suggested as 30

1 .

Consequently, the velocity profile could be 
obtained from the following equations. 
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sk
yVv 30ln5.2 *= (12)                                           

Another formulation suggested by many 
researchers is prandtlel 1/n power law. The 
relation can be describe as;    
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Where maxV is equivalent of maximum 
velocity at the outer region (higher than 
boundary layer) and δ prescribes boundary 
layer thickness. Since the boundary layer 
thickness is equal to the flow depth in most 
of the chute spillway length, the assumption 
of maxy=δ is valid for present application. 
In order to relate the maximum velocity 

maxV (at water surface maxy ) the unit 
discharge in chute could be utilized.  
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By integrating the above relation, the 
relation between depth averaged (mean 
velocity) meanv and maximum velocity at 
water surface is [14]: 

 (15)meanv
n
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Using above relation, the computed depth 
average velocities and flow depth can be 
used for calculation of velocity profile at 
every point of the flow field. 

6 Initial and Boundary 
Conditions 
At the solid boundary nodes slipping 
condition are applied by imposing zero to 
normal velocity components to the wall. 
Having computed tangential velocity at wall 
nodes, wall resistance may be computed and 
applied to boundary nodes. The effective 
surface for wall global friction stresses may 
be computed multiplying the flow depth by 
contribution length of two wall boundary 
edges connected to each boundary node. 
Various types of boundary conditions are 

specified in the numerical model for flow 
and wall boundary conditions figure 2. 
Inflow and outflow boundaries can be 
manually defined or automatically using 
normal vector and velocity vector at the 
boundary nodes figure 2. In the present 
model, different flow conditions at inflow 
and outflow boundaries are imposed. For 
sub-critical flows, at the inflow boundary, 
velocity components are imposed and water 
depth is extrapolated from the interior points 
and at the outflow boundary, and velocity 
components are imposed form the inside 
domain. For super-critical flows, at the 
inflow boundary, water depth and velocity 
components are imposed and at the outflow 
boundary, all of the variables are 
extrapolated from the interior points. When 
mixed flow forms in the channel, the 
boundary conditions of the flow boundaries 
have to be defined concerning flow regime 
at each boundary [15]. 
Proper initial condition may help 
accelerating the solution procedure. As can 
be seen in figure 2, in this work constant 
water elevation is considered for sub-critical 
part of the flow domain (where the depth 
averaged flow equations are to be solved in 
horizontal coordinate) and constant water 
depth is considered for super-critical part of 
the flow domain (where the depth averaged 
flow equations are to be solved in sloping 
coordinate). 

 

7 SEYMAREH Spillway 
Simulation 

In order to present the performance of the 
model to solve the real world engineering 
problems, the model is applied to simulate 
flow from the dam reservoir over the ogee 
spillway and two chute canals ending to the 
flip bucket of the SEYMAREH project, 
which is constructed at south west of Iran. 
Some measurements are available for the 
experimental laboratory model test data 
[16]. 
The unstructured triangular mesh which 
contains 5871 nodes and 16681 edges 
generated using Delauney triangulation 
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method is converted to a three dimensional 
surface by assigning vertical elevation to 
each grid point [17]. This mesh is similar to 
that was used for previous numerical 
simulation by solving standard shallow 
water equations [15]. 
Sub-critical boundary condition at upstream 
(dam reservoir) and super-critical boundary 
condition at downstream (bucket end) are 
considered. 
The computed water surface elevations and 
flow depths at the entire computational 
domain are shown in figure 3. The 
interesting point is the computation of two 
inclined shock waves starting from the 
middle part of the chute (from the point that 
the thickness of the dividing wall decreases, 
and hence, the width of the two chute bay 
decrease) and continue to the buckets. This 
fact proves that developed model can 
compute expected shock waves, which are 
expected to appear due to change in chute 
width. 
The computed velocity vectors and stream 
lines, which show the flow direction, are 
plotted in figure 4 and figure 5. As can be 
seen, these vector present horizontal flow in 
sub-critical part of the domain (reservoir) 
and parallel to the bed surface flow in 
supercritical part of the flow domain (chute 
and bucket). This fact proves that developed 
model can compute the velocity patterns of 
chute spillways in a three dimensional 
manner. More details about velocity profile 
(computed on nodal points of the five 
layers) can be seen in figure 6. 

8 Conclusion 

Using an inclined coordinate system, the 
horizontal velocity components are 
transformed to the velocity components 
parallel to the bed surface. The depth 
averaged equations derived for flow in 
coordinate system mapped on sloping bed 
surface are very similar to the standard 
shallow water equations for flow in 
horizontal plane. Therefore, unstructured 
finite volume flow solver for solving sub-
critical flow problems is easily adapted for 

the solution of above mentioned developed 
mathematical model for super-critical flow 
on steep chute canals. Using this technique, 
not only horizontal component of the flow 
velocity are computed correctly, but also 
vertical velocity component appeared in the 
simulation results. Consequently the 
computed velocity vectors are parallel to the 
bed surface at the entire supercritical part of 
the flow domain. Combining the developed 
numerical solver for super critical flow on 
steep slopes with the standard shallow water 
equation solver suitable for sub-critical flow, 
provided the ability of simulating mixed sub 
and super critical flows. Therefore, 
numerical simulation of low speed flow in 
reservoir and high speed super critical 
slopping flow in steep chute and ski jump 
flip bucket spillway is performed 
successfully by computation of three 
dimensional velocity patterns and shock 
waves. Having solved the depth averaged 
velocities parallel to the bed for supper 
critical flow in chute spillways and water 
depth, the velocity profile normal to the bed 
surface at nodal points of the arbitrary layers 
is computed by application of empirical 
formulations suggested by the experimental 
research workers. 
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Fig.1, Transformed velocity and depth 
 

X

0

50

100

150

Y

0

20

40

60

80

100

120

H

-20
0
20

X

Y

Z

H: -20 -15 -10 -5 0 5 10 15 20 25

SEYMAREH Spilway Flow

 

X

0

50

100

150

Y

0

20

40

60

80

100

120

H

-20
0
20

X

Y

Z

D: 12 14 16 18 20 22 24 26 28 30 32 34 36

SEYMAREH Spilway Flow

D S Y diFig.2, up; boundary conditions (Wall: red, Flow: 
grey), down; initial conditions (Depth) 

 

Proceedings of the 2nd IASME / WSEAS International Conference on Continuum Mechanics (CM'07), Portoroz, Slovenia, May 15-17, 2007      105



X

0

50

100

150

Y

0

50

100

H

-20

0

20

X
Y

Z

H: -20 -15 -10 -5 0 5 10 15 20 25

SEYMAREH Spilway FlowSEYMAREH Spilway Flow

X
Y

Z

H: -20 -15 -10 -5 0 5 10 15 20 25

SEYMAREH Spilway FlowSEYMAREH Spilway Flow

Fi.3, computed water surface elevation , general 
view (up) close view (down) 

 

X

0

50

100

150

Y

0

50

100

H

-20

0

20

X
Y

Z

V: 2 4 6 8 10 12 14 16 18 20 22 24 26 28

SEYMAREH Spilway Flow

Dr S Yazdi

SEYMAREH Spilway Flow

Dr S Yazdi
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