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A generalized polyconvex hyperelastic model for anisotropic solids
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Abstract: A generalized polyconvex hyperelastic model for anisotropic solids is presented. The strain energy func-
tion is formulated in terms of convex functions of generalized invariants and is given by a series with an arbitrary
number of terms. The model addresses solids with orthotropic or transversely isotropic material symmetry as well
as fiber-reinforced materials. Special cases of the strain energy function suitable for anisotropic elastomers and
soft biological tissues are discussed and illustrated by numerical examples.
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1 Introduction

In order to model the non-linear mechanical behav-
ior of anisotropic solids undergoing large elastic de-
formations, appropriate constitutive models are re-
quired. There are a number of hyperelastic models
which take into account this anisotropy, among those
the orthotropic St.Venant-Kirchhoff model [1], and
the well known Fung-elastic model [2]. The latter one
has been successfully utilized for various soft tissues.
However, some of these anisotropic models have been
shown to be non-elliptic, a shortcoming which can re-
sult in loss of material stability and lead to unphysical
behavior [3, 4]. In contrast, polyconvex hyperelas-
tic models a priori ensure the strong ellipticity also
called Legendre-Hadamard condition, which further-
more guarantees positive definiteness of the acoustic
tensor so that the speed of displacement waves is al-
ways real for any direction of propagation. Moreover,
in combination with coercivity, polyconvexity guar-
antees the existence of the global minimizer of the to-
tal elastic energy of the body [5] which is of decisive
importance in the context of a boundary value prob-
lem. To benefit from these positive attributes we pro-
pose a generalized approach to formulate polyconvex
anisotropic strain energy functions.

2 Material symmetry

Our approach is applicable to two classes of materi-
als. The first class contains those materials that can be
described by orthotropic or transversely isotropic ma-
terial symmetry. For orthotropic materials one intro-

duces orthonormal base vectors l;, ¢« = 1,2, 3, in the
principal material directions and defines three struc-
tural tensors

Li=lL®li, Ly=1 &Iy,
Lo=(I-L; —Ly) =l3®13, (D

where I denotes the identity tensor of the second or-
der. Transverse isotropy represents a material sym-
metry with respect to only one preferred direction,
denoted here by the unit vector I;. The transversely
isotropic symmetry can be described by two structural
tensors of the form

1
L=l ®l, L0=§(I—L1)- (2)

The second class includes fiber-reinforced materials
with an isotropic matrix and an arbitrary number n
of fiber families that are aligned in certain directions
specified by unit vectors 1;, ¢ = 1,2,...,n. In this
case, n + 1 structural tensors L;, ¢ = 0,1,...,n, are
defined by

1
L=l i=1,2,...n, Lg= gI 3)

With the aid of the above structural tensors one defines
the symmetry group of the material

G={QeOrh: QL,Q" =L,

4
i=0,..,n}, &

which contains the set of all orthogonal mappings that
do not violate the material symmetry. Orth denotes
here the set of all orthogonal second-order tensors.



3 Anisotropic polyconvex strain en-
ergy functions

A strain energy function W (F') of the deformation
gradient F is said to be polyconvex [5] if there exists

a convex function W (F, adjF, detF) such that
W(F) = W(F, adjF, detF), (5)

where detF denotes the determinant of the second-
order tensor F and adjF = F~!detF. According to
the classical invariant theory, the anisotropic strain en-
ergy function W can be represented by

W =W (tr(CL;), tr(C?L;), trC%) ,
i=0,1,...n, (©6)

where C = FTF denotes the right Cauchy-Green
tensor. Note that for fiber-reinforced materials (3),
the list of invariants in (6) is in general not com-
plete. While the invariants tr(CL;), i = 0,1,...,n,
and trC? are convex with respect to F, the terms
tr(C%L;), i = 1,2,...,n, are not. However, they can
be expressed in terms of invariants convex with re-
spect to F, adjF and detF [1, 6], which leads to an
alternative representation of the strain energy

W =W (I, J;,l¢c) , (7)
where
=tr(CL;), J; =tr[(cofC)L;],
cofC = C TdetC, Il = detC,
i=0,1,...,n. (8)

In the next step, convex generalized invariants I, and
J, are formed by means of non-negative weight fac-

(r)

tors w; ~ of the principal or fiber directions by

=S e =3 W,
=0 1=0

w =1, r=12..s )
=0

Polyconvex functions can be composed additively in
the form W (F) = W, (F)+W; (adjF) + W5 (detF),
where Wl, Wg, and W3 are convex functions of their
arguments [6]. This motivates a series representation

W= S [ (1) <0 (3)

+ h (1111/2)} (10)
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with an arbitrary number of terms s. Therein, f, and
gr are convex and monotonically increasing functions,
h, are convex functions of their arguments, and p, >
0 denote material parameters with the dimension of
stress. Calculating the second Piola-Kirchhoff stress
tensor S and enforcing the condition of the energy
and stress free natural state, in which I/V|C:I = 0,
S|c_1 = 0, we obtain the following requirements for
frs gr and h,

/ / L.,
Ir (1):gr (1):_5}17‘ (1):17
.., 8 (11

similar to those ones imposed on the so-called gener-
alized strain measures.

4 Special cases and applications

Particular forms of the functions f, g,, and h, have
not been discussed yet. A variety of suitable convex
functions may be found to account for specific mate-
rial properties. As an example, we present three useful
expressions demonstrating good agreement with ex-
perimental data. In order to describe the anisotropic
mechanical behavior of calendered rubbers [7], a
power function representation of the strain energy (10)
was successfully utilized [1]

Y WR FACED
+ i(J,?r—1)

+ 71 (HIQT — 1)} , (12)

with material parameters a,, > 1, 5, > 1, and v, > 0.
Similarly, the typical sigmoidal stress-strain curves of
this transversely isotropic elastomer may be modeled
by Gent-type functions [8]. This motivates the expres-

sion
1< I, —1
o
e

~ BIn (1— Jrﬂ:1>

- ’ylr (HIQT — 1)} : (13)
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Figure 1: Stress-stretch diagram for polyconvex
model with Gent-type terms vs. experimental re-
sults on calendered rubber sheets [7] (s = 1, p; =
48135 MPa, oy = 4.3347, B = 96.0502, w!’) =

0.3997, wi =1 — wi" = 0.6003).

wherein o, > 0, 3, > 0 are the limiting values of
I, — 1 and J, — 1, respectively. Figure 1 shows the
comparison between the nominal stresses obtained in
uniaxial experiments [7] and calculated on the basis
of the strain energy (13).

Soft biological tissues are characterized by a typ-
ical exponential stress-stretch response. In this case,
the exponential representations of f,. and g, are rea-
sonable [4]:

wo— irz;ur [L [ty

n ﬂlr [eﬁr(ﬁ—l) _ 1}
1

- [HI(}”T _ 1} } , (14)

with material parameters «, > 0, 5, > 0, and
v > 0. The exponential model was successfully
applied to describe uniaxial tension tests on samples
of glutaraldehyde fixed bovine pericardium [4]. The
comparison between model and experiment is pre-
sented in Figure 2 together with the related material
parameters. Note that in both numerical examples, the
strain energy series was truncated after the first term
(s = 1), including only four material constants for the
transversely isotropic and five for the orthotropic ma-
terial. For both rubber and biological tissue, incom-
pressibility was assumed. In this case, the last term
in the strain energy function (10) vanishes due to the
condition Il = 1.

—+
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Figure 2: Stress-stretch diagram for polyconvex

model with exponential terms vs. experimental re-
sults on chemically treated bovine pericardium [4]
(s =1, pp = 0.0606 MPa, a; = 36.9315, (1 =
45.6493, w') = 01739, wi = 0.4438, W =
1—w —wl = 0.3822).

S  Summary

A generalized polyconvex hyperelastic model is pro-
posed which offers wide flexibility in application to
various anisotropic solids. The model is given by a
series with an arbitrary number of terms satisfying a
priori the condition of the energy and stress free natu-
ral state. The series is composed of convex functions
of generalized anisotropic invariants. These functions
can be chosen appropriately in order to describe a spe-
cific material behavior such as that of elastomers or
biological tissues. The model addresses solids with
orthotropic and transversely isotropic material sym-
metry as well as those with arbitrary fiber-reinforced
structures which together constitute a significant part
of engineering materials and soft biological tissues.
Numerical results on the one hand and experimen-
tal data on calendered rubber and bovine pericardium
on the other hand show good agreement with a small
number of material parameters involved.
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