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Abstract: A generalized polyconvex hyperelastic model for anisotropic solids is presented. The strain energy func-

tion is formulated in terms of convex functions of generalized invariants and is given by a series with an arbitrary

number of terms. The model addresses solids with orthotropic or transversely isotropic material symmetry as well

as fiber-reinforced materials. Special cases of the strain energy function suitable for anisotropic elastomers and

soft biological tissues are discussed and illustrated by numerical examples.
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1 Introduction

In order to model the non-linear mechanical behav-

ior of anisotropic solids undergoing large elastic de-

formations, appropriate constitutive models are re-

quired. There are a number of hyperelastic models

which take into account this anisotropy, among those

the orthotropic St.Venant-Kirchhoff model [1], and

the well known Fung-elastic model [2]. The latter one

has been successfully utilized for various soft tissues.

However, some of these anisotropic models have been

shown to be non-elliptic, a shortcoming which can re-

sult in loss of material stability and lead to unphysical

behavior [3, 4]. In contrast, polyconvex hyperelas-

tic models a priori ensure the strong ellipticity also

called Legendre-Hadamard condition, which further-

more guarantees positive definiteness of the acoustic

tensor so that the speed of displacement waves is al-

ways real for any direction of propagation. Moreover,

in combination with coercivity, polyconvexity guar-

antees the existence of the global minimizer of the to-

tal elastic energy of the body [5] which is of decisive

importance in the context of a boundary value prob-

lem. To benefit from these positive attributes we pro-

pose a generalized approach to formulate polyconvex

anisotropic strain energy functions.

2 Material symmetry

Our approach is applicable to two classes of materi-

als. The first class contains those materials that can be

described by orthotropic or transversely isotropic ma-

terial symmetry. For orthotropic materials one intro-

duces orthonormal base vectors li, i = 1, 2, 3, in the

principal material directions and defines three struc-

tural tensors

L1 = l1 ⊗ l1, L2 = l2 ⊗ l2,

L0 = (I − L1 − L2) = l3 ⊗ l3, (1)

where I denotes the identity tensor of the second or-

der. Transverse isotropy represents a material sym-

metry with respect to only one preferred direction,

denoted here by the unit vector l1. The transversely

isotropic symmetry can be described by two structural

tensors of the form

L1 = l1 ⊗ l1, L0 =
1

2
(I − L1) . (2)

The second class includes fiber-reinforced materials

with an isotropic matrix and an arbitrary number n
of fiber families that are aligned in certain directions

specified by unit vectors li, i = 1, 2, ..., n. In this

case, n + 1 structural tensors Li, i = 0, 1, ..., n, are

defined by

Li = li ⊗ li, i = 1, 2, ..., n, L0 =
1

3
I. (3)

With the aid of the above structural tensors one defines

the symmetry group of the material

G =
{

Q ∈ Orth : QLiQ
T = Li,

i = 0, ..., n} ,
(4)

which contains the set of all orthogonal mappings that

do not violate the material symmetry. Orth denotes

here the set of all orthogonal second-order tensors.
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3 Anisotropic polyconvex strain en-

ergy functions

A strain energy function W (F) of the deformation

gradient F is said to be polyconvex [5] if there exists

a convex function
⌣

W (F, adjF, detF) such that

W (F) =
⌣

W (F, adjF, detF), (5)

where detF denotes the determinant of the second-

order tensor F and adjF = F−1detF. According to

the classical invariant theory, the anisotropic strain en-

ergy function W can be represented by

W =
⌢

W
(

tr(CLi), tr(C
2Li), trC

3
)

,

i = 0, 1, ..., n, (6)

where C = FTF denotes the right Cauchy-Green

tensor. Note that for fiber-reinforced materials (3),

the list of invariants in (6) is in general not com-

plete. While the invariants tr(CLi), i = 0, 1, ..., n,

and trC3 are convex with respect to F, the terms

tr(C2Li), i = 1, 2, ..., n, are not. However, they can

be expressed in terms of invariants convex with re-

spect to F, adjF and detF [1, 6], which leads to an

alternative representation of the strain energy

W = W̄ (Ii, Ji, IIIC) , (7)

where

Ii = tr(CLi), Ji = tr [(cofC)Li] ,

cofC = C−TdetC, IIIC = detC,

i = 0, 1, ..., n. (8)

In the next step, convex generalized invariants Ĩr and

J̃r are formed by means of non-negative weight fac-

tors w
(r)
i of the principal or fiber directions by

Ĩr =

n
∑

i=0

w
(r)
i Ii, J̃r =

n
∑

i=0

w
(r)
i Ji,

n
∑

i=0

w
(r)
i = 1, r = 1, 2, . . . , s. (9)

Polyconvex functions can be composed additively in

the form W (F) = Ŵ1 (F)+Ŵ2 (adjF)+Ŵ3 (detF),

where Ŵ1, Ŵ2, and Ŵ3 are convex functions of their

arguments [6]. This motivates a series representation

W =
1

4

s
∑

r=1

µr

[

fr

(

Ĩr

)

+ gr

(

J̃r

)

+ hr

(

III
1/2
C

)]

(10)

with an arbitrary number of terms s. Therein, fr and

gr are convex and monotonically increasing functions,

hr are convex functions of their arguments, and µr ≥
0 denote material parameters with the dimension of

stress. Calculating the second Piola-Kirchhoff stress

tensor S and enforcing the condition of the energy

and stress free natural state, in which W |
C=I

= 0,

S|
C=I

= 0, we obtain the following requirements for

fr, gr and hr

fr (1)=gr (1)=hr (1)=0,

f ′

r (1)=g′r (1)=−
1

2
h′

r (1)=1,

r = 1, 2, . . . , s (11)

similar to those ones imposed on the so-called gener-

alized strain measures.

4 Special cases and applications

Particular forms of the functions fr, gr, and hr have

not been discussed yet. A variety of suitable convex

functions may be found to account for specific mate-

rial properties. As an example, we present three useful

expressions demonstrating good agreement with ex-

perimental data. In order to describe the anisotropic

mechanical behavior of calendered rubbers [7], a

power function representation of the strain energy (10)

was successfully utilized [1]

W =
1

4

s
∑

r=1

µr

{

1

αr

(

Ĩαr

r − 1
)

+
1

βr

(

J̃βr

r − 1
)

+
1

γr

(

III
−γr

C
− 1
)

}

, (12)

with material parameters αr ≥ 1, βr ≥ 1, and γr > 0.

Similarly, the typical sigmoidal stress-strain curves of

this transversely isotropic elastomer may be modeled

by Gent-type functions [8]. This motivates the expres-

sion

W =
1

4

s
∑

r=1

µr

{

−αr ln

(

1 −
Ĩr − 1

αr

)

− βr ln

(

1 −
J̃r − 1

βr

)

−
1

γr

(

III
−γr

C
− 1
)

}

, (13)
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Figure 1: Stress-stretch diagram for polyconvex

model with Gent-type terms vs. experimental re-

sults on calendered rubber sheets [7] (s = 1, µ1 =

4.8135 MPa, α1 = 4.3347, β1 = 96.0502, w
(1)
1 =

0.3997, w
(1)
0 = 1 − w

(1)
1 = 0.6003).

wherein αr ≥ 0, βr ≥ 0 are the limiting values of

Ĩr − 1 and J̃r − 1, respectively. Figure 1 shows the

comparison between the nominal stresses obtained in

uniaxial experiments [7] and calculated on the basis

of the strain energy (13).

Soft biological tissues are characterized by a typ-

ical exponential stress-stretch response. In this case,

the exponential representations of fr and gr are rea-

sonable [4]:

W =
1

4

s
∑

r=1

µr

{

1

αr

[

eαr(Ĩr−1) − 1
]

+
1

βr

[

eβr(J̃r−1) − 1
]

+
1

γr

[

III
−γr

C
− 1
]

}

, (14)

with material parameters αr ≥ 0, βr ≥ 0, and

γr > 0. The exponential model was successfully

applied to describe uniaxial tension tests on samples

of glutaraldehyde fixed bovine pericardium [4]. The

comparison between model and experiment is pre-

sented in Figure 2 together with the related material

parameters. Note that in both numerical examples, the

strain energy series was truncated after the first term

(s = 1), including only four material constants for the

transversely isotropic and five for the orthotropic ma-

terial. For both rubber and biological tissue, incom-

pressibility was assumed. In this case, the last term

in the strain energy function (10) vanishes due to the

condition IIIC = 1.
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Figure 2: Stress-stretch diagram for polyconvex

model with exponential terms vs. experimental re-

sults on chemically treated bovine pericardium [4]

(s = 1, µ1 = 0.0606 MPa, α1 = 36.9315, β1 =

45.6493, w
(1)
1 = 0.1739, w

(1)
2 = 0.4438, w

(1)
0 =

1 − w
(1)
1 − w

(1)
2 = 0.3822).

5 Summary

A generalized polyconvex hyperelastic model is pro-

posed which offers wide flexibility in application to

various anisotropic solids. The model is given by a

series with an arbitrary number of terms satisfying a

priori the condition of the energy and stress free natu-

ral state. The series is composed of convex functions

of generalized anisotropic invariants. These functions

can be chosen appropriately in order to describe a spe-

cific material behavior such as that of elastomers or

biological tissues. The model addresses solids with

orthotropic and transversely isotropic material sym-

metry as well as those with arbitrary fiber-reinforced

structures which together constitute a significant part

of engineering materials and soft biological tissues.

Numerical results on the one hand and experimen-

tal data on calendered rubber and bovine pericardium

on the other hand show good agreement with a small

number of material parameters involved.
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[6] J. Schröder and P. Neff, Invariant formulation

of hyperelastic transverse isotropy based on

polyconvex free energy functions, Int. J. Solids

Struct. 40, 2003, pp. 401-445.

[7] J. Diani, M. Brieu, J.-M. Vacherand and

A. Rezgui, Directional model for anisotropic hy-

perelastic rubber-like materials, J. Phys. IV 105,

2003, pp. 281-288.

[8] A.N. Gent, A new constitutive relation for rub-

ber, Rubber Chem. Technol. 69, 1996, pp. 59-61.

Proceedings of the 2nd IASME / WSEAS International Conference on Continuum Mechanics (CM'07), Portoroz, Slovenia, May 15-17, 2007      98


