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Abstract

In this paper a numerical algorithm is described for
solving the boundary value problem associated
with axisymmetric, inviscid, incompressible and
irrotational flow with a circumferentially arranged
cascade of aerofoils placed in the duct. The
algorithm is capable of calculating the duct wall
geometries from prescribed  wall  velocity
distributions. The equations modeling the flow are
derived using the stream function ¢(x,y) and the
function #(x,y) as independent variables where for
urotational flow ¢(x,y) can be recognized as the
velocity potential function, for rotational flow
d(x,y) ceases being the velocity potential function
but does remain orthogonal to the stream lines, the
x and y arc the usual axial and radial coordinates
in cylindrical polar coordinates respectively. The
technique described is capable of tackling the so-
called inverse problem where the velocity wall
distributions are prescribed from which the duct
geometry is calculated, as well as the direct
problem where the wvelocity distribution on the
pressure and suction surfaces are calculated from
prescribed geometries. The two different cases
outlined in this paper are boundary value problems
with Neumann and Dirichlet boundary conditions
respectively  with  results for the Neumann
boundary condition only included. The axial
velocity and the swirl velocity are prescribed such
that no vorticity is transported through the duct.
The governing linear elliptic second order partial
differential is coupled with a set of quasi-linear
hyperbolic first order partial differential equations
with characteristics parallel to the ¢ and y axes,
the numerical solution is thus obtained iteratively
using finite differences to approximate the
derivatives. The presence of the blades has a
bearing on the rate of mass flow and thus alters the
usual equation of continuity.

1. Introduction
Designers of annular ducts require numerical
techniques for calculating wall geometries from a

prescribed velocity distribution. The objective of
the prescribed velocity is typically to avoid
boundary layer separation see for example Curle
(2). At inlet a constant axial velocity is prescribed
(along with an appropriate swirl component of
velocity) such that the flow is irrotational.

This paper describes a numerical algorithm for
solving the boundary value problem that arises
when the independent variables are ¢ and  where
¢ may be identified as the wvelocity potential
function (for irrotational flow only), for flow with
vorticity, ¢ ceases being the velocity potential
function but does remain orthogonal to ¢ which
may be identified as the stream function. The
dependent variable y, is the radial coordinate and
x the axial coordinate. The numerical technique is
based on the finite difference scheme on a uniform
rectangular mesh.

2. The Design Plane

Defining R
w=u—iv=qge " 4 Z=X+iy

then using the Cauchy-Riemann equations the

identit
W
—==--io,)
oz 2
is easily verified where
o ov
7 ox Oy
and
v Ou
@, =———
dx oy

In application to steady plane flow, with rectilinear
coordinates x, ¥ and velocity components u, v in
the x, v directions respectively q is the flow speed,
& 1s the flow direction measured from the x axis,
®, 18 the component of vorticity normal to the
planc and 7 1s the rate of expansion or dilation. If
5 is zero everywhere apart from at isolated
singularitics e.g. point sources the velocity

54



components can be derived from a stream function
¥ level lines of which coincide with the
streamlines. If @, is zero everywhere except at
point vortices then the velocity components can
also be derived from a velocity potential ¢, level
lines of which are orthogonal to the streamlines.

3. The First Auxiliary Flow.

Consider a flow of complex conjugate velocity w'™/
where
3,
W = oy P

3.1
an 3.1

with ¢ real and ﬁ—w its derivative in a direction
n

(9 +%) from the x-axis. This auxiliary flow and
the actual flow (of complex conjugate velocity w)
3,
clearly share the direction ¢ and takinga—w, the
s

derivative in the direction .9, to vanish over either
flow ficld then

a—W:cos&@ a—w+sm3 6_(// (3.2)
os Ox Oy
=0
while
a—w = —sm!Qa—W + cos&a—w
on ox Oy
=— 08 ec&a—w = sec 35_1//
Ox cy
and substituting in definition (3.1)
oy Ox
so that
@) 2
W _ 0w (3.3)
Oz 0z0z

Certain observations can be made on this auxiliary
flow characterized so far, by equation (3.2) and
(3.3). From equation (3.3) it has zero rate of
expansion and a vorticity given by

w" =- Vi
Level lines of ¢x,y) define its stream line pattern
and also that of the actual flow, but the

distribution of ¢ across the stream has not yet been
allocated.

4. The Second Auxiliary Flow

Next consider a flow of complex conjugate
velocity w, where
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W(Z) — 67@ e—zS

Os
with @#x,v) real. This flow also shares direction
and streamline pattern with the actual flow but in
order to establish a family of curves orthogonal to

“4.1)

) .. op . )
the strcamlines, this time o 1s taken to vanish

on
over the flow field, 1.¢.,
8_q0 =-sin & 8_90 + cos & 8£ =0
on ox oy
so that
6—@ = CoS 3%+sin Sa—q)
Os ox oy
6_«;0 = sec Sa—qp = cosecSa—q)
Os Ox oy

and substituting in definition (4.1)
g - 09 09

Ox Oy
ow® _ 5 e
oz 0zoz

This second auxiliary flow therefore has zero
vorticity but a rate of expansion given by

77 = Vip

level lines of &x,v) define a family of curves
orthogonal to the streamline pattern common to
both auxiliary flows and the actual flow but the
distribution of & along the stream has yet to be
allocated.

5. Intrinsic Flow Equations

The differential operator identity

0 3,
Ol pen L
ds On Oz
is easily verified and when applied to the function
logiw) there follows after some simple
manipulation
o 0 1 _
(-+i ) logw) = —(—iw,) (5.1)
os ©on q

Applying equation (5.1) to the actual flow and
cach subsidiary flow gives

0 5, 1
(—+i_)og(q)-i8)= —(7—iw,) (5.2)
0s On q

g 0 _ . 2
(—+i ) (log(¥)+id)=—1FVy (5.3)
s on
(2+1’2)(10g((l))+i:9):-@7q9 (5.4)
s on

a¢

where @ and ¥ represent the reciprocals of r
s
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5,
and a—w respectively. The system of implicit flow
n

equations comprises the real and imaginary parts
of equation (5.2), the real part of equation (5.3)
and the imaginary part of (5.4)

n

& Gogtan + & - : (55)
2 ogian- 7 = - (56)
2 og(ry- " =0

(5.7)
aas(log(CD)) + g‘j -0 (5.8)

6. The Fundamental Design Plane
Equations

Eliminating 4 between equations (5.5) and (5.6)
and again between equations (5.7) and (5.8) gives

o
o og(q'¥)) = v
s q

o
+ (log(q®)) = _—
71 q

substituting 4 = g¥ and B = gq@. The last pair of
equations can be written as

2
= (log(4)=-LB 6.1)
O q

O (log(B)) = ~Le y (6.2)
oy q

whilst equations equation (5.7) and (5.8) similarly
become

A8 q 08
7 (log(Ly=-22 6.3
Baqp(og(A)) Oy (6-3)
B2 q 09
d =~ (log(Ly="2 6.4
n A@lp(og(B)) O ©4)

eliminating & between equations (6.3) and (6.4)
gives

o A@log(q] s Balog(qj =0
Cod| Bogp A cw| Ay B

(6.5)
Regarding temporarily 7, @, and g as known
functions of & and y the system (6.1) and (6.2) is
quasi-linear  hyperbolic  with  characteristics
parallel to the & and i axes which maps the
physical flow field into an infinite strip in the
(4w plane. Bearing in mind the freedom
available in the stream wise variation of & and the
cross stream variation of ; suitable values of A
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can be prescribed along one ¢ characteristic and
those of B can be prescribed along one i
characteristic.

Regarding similarly 4 and 5 as known functions of
# and y equation (6.5) is lincar elliptic and
although boundary conditions for it will depend on
the particular application, the Dirichlet choice
involves the prescription of g over the tflow field.
Numerical coupling of the two schemes yields the
solution in the Design Plane.

7. Physical Coordinates

From elementary geometric considerations and
definitions given previously
dz = &' (ds +idn)
81.9
=~ (Bdp+iddy) (7.1)
q

Thus gds=Bdg and qdn=Ady. So that when 9, g,
A and B are known in the (4 y) plane the physical
coordinates x and y can be calculated. Alternatives
to equations (6.3), (6.4) and (6.5) which arc more
convenient in some applications can be obtained
using the values of

oz Oz

—and —

o oy

given by equation (7.1), so that

a—x = —cosd, a—y = —gin 4,

dp q dp  q

o = —ésinS, 24 = —cosd

oy q voq

hence 6—x = Ea—y (7.2)

op Ady

and 6—}6 = —ﬁa—y (7.3)

Cyr B ogp

hence eliminating x in (7.2) and (7.3) yields

o4 2By )y a4
dp\Bop) ow\ Aoy '

Equation (7.4) may be used to replace equation
(6.5) in the design system previously described
and for use in equations (6.1) and (6.2)

1_ 1Y), 1 (@)Y
g' A'\ oy B\ d¢

this time completion of the physical coordinates is
provided from equations (7.2) and (7.3) by

Ady B o

The Dirichlet boundary condition involves the

prescription of ¥ on the boundarics of the design
planc, whilst the Neumann the prescription of
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&>
Op
is being considered). The technique can easily be
extended to cope with the so-called Cauchy and
Robin boundary conditions. An analytic treatment
of equation (7.4) can be found in Pavlika (4),
Cousins (1) and Klier (3).

8. The Numerical Algorithm in the
Design Plane

or — (dependmg on which bounding surface

Rewriting the partial differential equation that y

Satisfies as:

where aza(y,& tp), b=b(v,d ) and c= c(v, 4 y),
where @, b and ¢ are function of y, #and . For
problems posed in the design plane c=0, the a and
b will vary depending on whether the flow field is
urotational or swirl free etc. Writing in finite
difference form using central differences (with
c=0) gives:

5} { ay} 1 |:(ax+1,j +a; )ym,j _4ai,_jyl,_j}
apl"ap), 207 |+lan,,+a,,)y,
and

I
dw\ oy ), 208 |+, b)Y,
Thus at the point (iA#,;Aw) (to be denoted by (i)

from now on in this paper), the equation is
represented by a computational molecule as:

+Nisjyld—1

I/Vz,jyi—l,j _Ci,jyi,j +El,jyl+1,j = Ri,j (81)

+ Sz,_: yi,_}+l
Where the V, S, // and 7 and R may be identified
as

W, = (Ay/)z(al,j +a, ;)

E = (Ay/)z(am,j +a )

N, = (Agﬁ»)z(bi”,f1 +5,)

S, =A@, ., +h)
C.,=4(Ap)a, , +(Ay)’b, )
R, =2Ap)*(Ap)’c,

9. The Difference Equations

Equation (8.1) applies for i=] to M; j=1 to Nona
uniform mesh as described in Pavlika (4), with
special consideration at j=/ and j=N, so that with
Dirichlet boundary conditions, say for j=N

|
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N, wYixa
VVJ!,Nykl,N - Cz,Nyz,N +E1,Ny1+l,N:Ri,_} -

Si,Ny § AT
with y, .-, prescribed as the Dirichlet data for
0 <i <M. Forj=2 to N-1

+Nz,jyi,j—1

I/Vz,jyz—l,j - Cl,jyl,j +El,jyl+1,j = Ri,j
+Si,jy1,j+1

and for j=7

VVz,lykl,l - Ci,lyl,l +E1,1y1+1,1 :Ri,l _Nz,lyi,O

+ Si,ly 52
similarly y; , prescribed as the Dirichlet data for
O<i<M.

10. Vector form of the Difference
Equations

The above equations can be written more
conveniently in matrix-vector form as:

I/Vi,l 0 0 yz—l,l
0 VV@'J 0 yi—l,2
0 W, S
L W:,N__yI—I,N_
- CI 1 Si,l O . " yi,l
N1,2 - Ci,2 Si,2 O " yi,2
Nx',:} - Ci,S T
L _CI,N__yz,N_
_Ei,l 0 0 | y1+1,1 ]
O E@',2 0 yi+1,2
0 E, =
L EI,N__yI+1,N_
I Ri,l _Nl,lyi 0
Rz,z
=RY say. (10.1)
_RI,N - Sz,Nyi,NJrl i
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11. Direct Solution of the
Difference Equations

The matrix-vector equation (equation (10.1)) can
be written as

Wﬁ)Z(H) +Aﬁ')£ﬁ) + Eﬁ)zﬂﬂ) - Bﬁ) (11.1)
With diagonal matrices W and EY and
tridiagonal matrix A" all of order (NxN), and
column vectors ¥ and RY of order N. To solve the
vector recurrence relation a speculation is made
that the ¥** vector can be related linearly to the
¥ vector as follows:
¥ = gy + KV (11.2)
where the B” and the K are at present unknown
matrices and column vectors respectively.
Substituting (11.2) into (11.1) gives

(W(UB(IJ +A(¢J)yﬁ) — R(i)_ W(IJ K(J)_ Eﬁ)Y(H—JJ
= 1Y = - (WVBY + AY) RUp

L + By +Aﬁ))—1_@m 7_W(1) K(”)
but

Y(i) :B(H—j} Y(1+j) + K(H—l)

Thus equating coefficients implies

B = B + 4Vt B (11.3)
and

For /=0 this gives

¥y = gy 4 gtV (11.4)

To determine the K, if the first iterate B = 0
then K/ = ¥

The matrix and vector sequences are now defined
by equations (11.3) and (11.4) for i=/ fo M. The
Y vectors are now calculated starting from right
to left (as Y™ is known) using

Y{IM) :B(M”rj) Y{]\/I+j) + K(IMJU’)

The diagonal matrices 7" and £ have elements
WY =W, and EY = E,,

The tridiagonal matrix A has entries

A,;,=-Cy j=1toN

Ajjir =8, Ay =Ny, j=1toN-1

12. The Blockage Effect: Deriving
the Additional Flow Equation
due to Circumferentially
arranged Aerofoils

In deriving the additional flow equation the effect
of the circumferentially arranged blades placed in
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the duct must be considered. The blades effect the
rate of mass flow 73, considering figure 12.1, with
k=k(x,y) representing the blockage effect, the mass
flow into and out of the fluid element is:

Face A:

[ ou J ok ,
2u, +—" &[2k+§x]+0((é§c) )
Ox Ox

Face B:

O,

—| 2u,_+2
( ox oy

§x+aux 5yj*

oy 2k+2%5x+%§y
Ox oy
+O((6x)" ) +O((83)")
Face C:
ou ou
—|2u,+ L 6x+2— Loy |*
T oo oy
ox 2k+2%5y+%5x
oy ox
+O((5x)" ) +O((Sy))
Face D:

2ux+au"‘ oy |0y 2k+%5y
ay ay

+0(63)")

summing these terms, using the principle of
conservation of mass and taking the limit as
ac—> 0,00 —> 0 gives:

C%CIIE; O(massﬂowj _ O(ku,) N Aku,) 0
& =0 4oy ox oy

which may be identified as the continuity equation
for two dimensional compressible flow with the
density term being replaced by the blockage factor

k. This will be given in cylindrical coordinates in
section 16.

13. The Blockage Function k(x,y)

The blockage function k¢x,v) i1s defined to be of
the form

k(x,1)=1-

A(x)
T

where the function Afx) represents the contour
shape of the aerofoil and the term 77y is a scaling

factor given be T(y)= i:: ¥, where N is the

number of blades (arbitrary). If the axial span of
the aerofoil is x; then the function A(x) is defined
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to have a maximum at x,/5 and Afx,/5)=x,/10.
Furthermore A¢x) is chosen to vanish at x=0 and
x= x; .Choosing Afx) to be of the form

Mx)=ex™(xF - xlﬁ ), where c is a constant.
with f =1(arbitrary) = a = i, applying the

conditions mentioned above gives

1/4
hence A(x) = —%(;—xJ (x=x,).

14. The Boundary Conditions

Initially the Neumann boundary condition will be
analysed. In this case the vector of unknown y
values is extended to include the ;=0 row (for the
top boundary) and j=N+] for the bottom
boundary, (as shown in Pavlika (5)). The
difference scheme is now applied over this
extended set i.e. the scheme is centered on the
point j=0, (and j=N+1 for the bottom boundary).
Considering for the moment only having a
Neumann condition on the top boundary, the
centering the scheme on j=0 will involve the value
of y at j=-1, this term is expressed in terms of the
value of y at j=/ using the known normal
derivative, such that:

Yian =V (6_}7

= known expression
2A@ o9 ),

so at the mesh point (3,0) (i=1,2,....M) the finite
difference scheme gives

VV:,OJ}PLO - Cl,Oyi,O + Ei,Oyi+l,0 :‘Ri,O - Nz,()yz,fl
+Sz,0yz,1

Applying the boundary condition gives

I}P'i,()yi—l,l) - Cz,()yi,() +Ei,0yi+l,0
+(Sz,0 + Ni,O )yz,l

c
:Rz,O - ZAWJ,O (ﬁ}
i,0

Using
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[iy] _ e L_L[a_yjz
al[/ 1,0 . qio Bfo 890 1,0

the normal derivative is now known in terms of the
prescribed speed which in this case is along the top
boundary. The matrix-vector equations become

Similar analysis can be performed if the bottom
boundary is to have a Neumann boundary
condition as described in Pavlika (4). The
technique can also be applied to the case of Robin
boundary conditions.

15. Axisymmetric Flow in the
Absence of Body Forces

Here numerical solutions to inviscid wrotational
flow with a free vortex swirl velocity profile are
derived. The axial velocity component u.(y) at
inlet will be chosen to be of the form wu.(y) =e,
where ¢ is a constant and the swirl velocity u,(v),

will be of the form u,(y) = iWhere the 1 is a
Y

constant representing the so-called free vortex
term. For the case when body forces exist, for

VVi,O O O _yi—l,()
O VV:,I O yi—l,l
0 W, 0 +
L VV:,N__yz—l,N_
__CI,O (Sz,O +Ni,0) O __yzl)_
N:,l _Cz,l Szl O yil
N1,2 _CI,Z
L _Ci,N__yi,N_
+
E@',O O O " " y1+1,0
0 Ez,l O yHl,l
0 E, =
L Ei,N__yi+1,N_
RI,O - ZAWK',O (@}J
6W 1,0
Rz,l
L Rz,N _SI,Nyi,N+1
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example when the effect of the blades are being
considered the force is resolved into a component
perpendicular do the flow direction, modeling the
guiding action of the blades and into a component
parallel to the flow direction, modeling viscous
effects. These two cases are discussed in Pavlika

(5).

16. The general tflow equations in
the physical plane(y, o, x).

Here equations are given for the general case of
axisymmetric, inviscid and rotational flow in the
absence of body forces so that the algorithm can
accommodate a larger class of flow problems as
shown in Pavlika (5). Adopting cylindrical polar
coordinates with y being the radial coordinate, o
the circumferential and x the axial coordinate,
defining velocity components #, , u, and u, with
corresponding vorticity components @, , @, @; in
the direction of increasing y, o and x respectively,
then the equation of motion with unit density
becomes:

%——V.p

= 16.1
Dt T (16

D, . o .
WhereD—m the material derivative. Equation
t

(16.1) can be written using well known vector
identities as:

ou, +ux6u}, o ou, _ﬁ_ ap
ot ox T oy oy oy
ou, ou, Ou, UL,
+u, +u - =0
ot ox T oy v
3, 5; 5;
U g, Mo gy O P (16.2)
ot ox 7 Oy Ox
Furthermore
Z+(u Viu=-V.p

can be written (once again using an appropriate
vector identity as)

ou 1
=+(@Aru)=-V(p+—g*). Thus
Py (@ru)==V(p 2q*)

for steady flow Crocco’s form of the equation of
motion 1s obtained, i.c.

(unw)=VH (16.3)
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where  is the total head defined by H = p + ; q°.

Calculating the cross product on the left hand side
of equation 16.3, gives

cH
S T U0, U O,
Oy
O=u,0, —u,o,
cH
—=U,®, — U0,
o
(16.4)
In addition for axisymmetric flow the vorticity
vector ® becomes
ou o
@=VAu= a pri—L-Zetas
cx | = | ox Oy
120
{ (yua)} x (16.5)
y oy

The equation of continuity becomes
Ox Oy

Vau =

17. The Design Plane counterparts

In order to compute numerical solutions in the
design plane, expressions are required for the terms

A, Band @, thus

B ou
Ue f T l(u 6—y+u ]

ox oy Ox
=—q— (log(y))
s
or
2
g 0
=-L " q
1=""% Py (log(3)),
but

2

_q9 0
="y aq}(log(ﬂ‘t))

ow _ 34
thus Ay = f@w). ov_ q
Fw)
arbitrary function f{y) represents the freedom in
the cross stream distribution of y and choosing

f(y) to be unity everywhere y can be identified as
the usual Stokes stream function given by

that 1s . The

Cyr Oy
—— ==y, — = YU,
ox T oy 7
Equation (16.5), (circumferential component)
gives
0 0
0= Ou,) . 00M,)

Ox Yooy
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Referring to the meridional plane figure 17.1, it
may be deduced that
ox oy
u frd - [
-1 ds’ “=d os

5,
= — =0
oy Ha)
sy, =Cy)

d
where g = ES In terms of C(y) the vorticity
t

vector (equation (16.5)) becomes

1aC du, Ou,
=Vau=y- y+ - a+
B% o ox oy

{ 18C }
y oy
= @y + &y, &+ o x, by definition.
An expression for @, is required as this appears in

the expression for B, so using the radial component
of equation (16.4) gives

. 18CY 1 aH
““ul\yoy) w oy

using the Stokes’ stream function this becomes

_Cy) ( dC] dr
y \dy dy

which is the required expression to be used in

calculation of B according to definition (6.2). If

far upstream the flow is assumed to be cylindrical

so that all quantities are independent of x, then

with unit density the equation of motion and the
Stokes’ Stream function give:

24

giving

2
a)a — C(W) (CIC:J 77( +ui)_ uc{
v \dy) 2dy u_y

X

With u (y)=a and u,(y)= i as previously
Y

defined. Once Z:H has been calculated upstream
'4

it takes this value throughout the (& ) since as is
self evident the expression is independent of &
This last expression for @, is required in the
calculation of B and numerical coupling with
equation (7.4) gives the numerical solution in the
design plane.

18. Downstream Conditions

Downstream a cylindrical flow condition as
discussed below will be prescribed. Defining the
pressure function /¢y) and the function C(y) as

1
Hy)= +u§)+ﬁ and C(y)= yu,

for cylindrical flow radial equilibrium (from
equation (16.2) radial component gives

1dp ul
pdy
Integrating gives

u. C*
S gy = I #)dy

:)(p Py = |

y—inner y y—inner

Which gives Hiy) as

H(W)— 7(u +u )+ py —inner
C?
+ I (;'u) dy
y—innar y
2
Now j ¢ (3"”) dy = _tL ICZd(lfyz)
y—inner y y—inner

C1ler (e 1 1 .dC?
e e 3 | P
Y Y y—inner y—inner y 34

Therefore

y—inner

1 —mmner
)=+ P @)

1 dc?
w0 dy
Suppose u_, =u_,(y)and u,, =u, (), where

dy

the subscript 1 denotes upstream conditions, then
u’x,Z = u’x,z (W) and u’cx,z =u

functions of y, where the subscript 2 similarly

.2 (W) are required as

denoting downstream conditions, so that

1 P Jinner 1
5”’;,2 = H(W) - 27 - E(Hi,l )inner
1, 1 d4dC?
-~ | = (18.1)
2 y=0 yl dw
d 1
and J. l/j d‘l/— (J} yz mner)
w=0 u’xz

Furthermore C(y) = yu,, = y,u,,.and equation

(18.1) now gives



1 2 1 2 pl,mner pz,mner
7“3(2 = 7ux1 -
27727 p P
1
~ ((H Z,l )mner - (uiﬁ )inner )
2
1 1 1
+— (z—zjd(cz)
2,0 ¥
or
2 2 1 1 5
W=l +K + [|—-— [dC?) (82
w=0 1 2
where

pl,mner pz,mner 2 2
K = 2( - ) + (ua,l )mner - (ua,z )mner

and y} =33, +2 | wy (18.3)
w=0 MI,Z

with 2, > in this case given by (18.2).

19. Calculation procedure

The calculation of the downstream radii vi(y)
follow from equation (18.3) with u,, given by
equation (18.2), which can be written as

uiz = g(y)+ K , where

11 )d(C?
g)=ul,+ | (Z—ZJ()Q’W
e\ Y2 ) Ay

In order to calculate the (n+1)" iterate it is known
that:

i(yz )=2 i diyj
8]{ 2 ,outer o 8K g(w) +K

=0 (u;' , )(’1)
but ,

( (3 2 ](”) _ ())j,oufer )(m-l) - (ylz,outer )(”)
&(chuier - K(m.l) _ K(H)

(19.2)
from which as can be seen from equation (19.2)
the K™ must be calculated iteratively with K™¥=0,
Once the K™ has been calculated it is introduced
into equation (19.1), giving rise to a new

(@?,)" " which  in

(19.1)

turn  gives a  new

(yfsz)(nﬂ) from equation (18.3) and the process

repeated until some convergence criteria is

satisfied.
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20. Prescription of the speed
distribution, cubic in arclength,
s along the duct

In this paper the Neumann boundary condition will
be prescribed on the top wall boundary so that it is
the speed g that is given as a function of arclength
along the top boundary. The function chosen to
give a the ¢ distribution is chosen to be cubic
given by the following piecewise continuous
function

q(s)=gq,, for s <s,
g(sy=as> +bs* +cs+d, for 5, <s<s,
q(s)=gq,, for s> s,

where the constants ¢, b, ¢ and d are determined
such that the cubic g(s) distribution satisfies the
following conditions:

i) q(s) = q, for s=s,
11) q(s)= g, for s=s,

d
iii) 9 _ P 0), at s=s;, where
ds
5, €(s,,5,)and B = S{MJ,With
575
e#0,5 #5,.

) 1 )
Choosing 5, = E(S1 +s,)for example gives a

symmetrical speed distribution, £ is an arbitrary

scaling multiplier
2

) —— =0 at s=s;
s

application of these conditions with g g, g s;
and 5; known gives:

— qu_qd_ﬁ(s1_sz)
S13 —Si _353(512 _S§)+3S§(S1 —5,)

knowing a the values of b, ¢ and d follow by back

substitution, whence b=-3as;, c= 3a S; p and
_ _ 3 _ z_
d=gq, —as; —bs; —cs,
The inner radius is prescribed using this piecewise

continuous function giving rise to a radius
distribution as a function of the axial coordinate.

21. Conclusions

As shown, geometries have been produced subject
to given upstream and downstream conditions with
prescribed Neumann boundary conditions. In this
case the flow is chosen to be irrotational by
defining the inlet axial velocity profile to be of the
form u,(y) =a where e is a constant and the swirl

62
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velocity profile chosen to be of the form

l
u,(y)=—, where / is a constant, defining the so-

called free wvortex whirl. The downstream
conditions are defined such that cylindrical flow is
present, even though it was the speed that was
prescribed the algorithm can accommodate the
case when Dirichlet conditions are prescribed. The
number of blades has been wvaried and the
geometries produced are shown in figures 21.1,
21.2 and 21.3 respectively. Further examples of
the algorithm with a combination of boundary
condition are given in Pavlika (5). It was found
that at most four iterations were required to
achieve an acceptable level of convergence, with
the technique accelerated using Aitken’s Method.
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23. Figures
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Fig 12.1. A Fluid Element
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Fig 17.1. The meridional plane.
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Fig 21.1. The geometry and speed distribution produced with N=3.
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Fig 21.2. The geometry and speed distribution produced with N=4.



Proceedings of the 2nd IASME / WSEAS International Conference on Continuum Mechanics (CM'07), Portoroz, Slovenia, May 15-17, 2007 67

4 Conpons FHl velodky o etk ongl
Y etk moH Ukl mi(UEOST
Freorosk = 148
RHOl Jpon 245 Tets
um"lcg’! eeess—— oHbE
reg‘bq
]
3 u
Tpeed DIrErauEion o o
Purgston, o cHidl coor cinpise The Purgslory ol &
ar o PundElon of X
meH 02
minfcFCES M —
L

Fig 21.3. The geometry and speed distribution produced with N=3.



