
Task scheduling and control

LUMINITA GIURGIU, MIRCEA POPA
Technical Sciences Department

“Nicolae Balcescu” Land Forces Academy
Revolutiei no. 3-5 Street, Sibiu

ROMANIA
lumigee@arm http://www.armyacademy.ro

Abstract: - This paper demonstrates some aspects of task scheduling policy effects on embedded control
systems. This problem is studied because almost all control algorithms are realized by computers and
controllers are often implemented as one or several tasks on a microprocessor with a real time operating
system. The case of three tasks running concurrently on the same CPU and controlling three different dynamic
systems is simulated in MatLab TrueTime toolbox environment. Embedded control systems are subject to
limited computer resources that are in fact shared resources, for which the tasks compete. A priority based
approach and a dead line based scheduling are confronted in order to establish advantages and disadvantages.

Key-Words: - scheduling policy, computer based control, embedded control systems

1 Introduction
Embedded control systems study requires inter-
disciplinary knowledge of both control engineering
and computer science and their inter-relations.

1.1 Scheduling policy
Real time scheduling theory deals with the problem
of, given a set of tasks, finding an execution order
that assures that all tasks meet their timing
constraints. Scheduling algorithms fall in two
categories: static and dynamic scheduling.

Static scheduling is an offline approach: an
optimized execution order is predetermined and this
execution order is cyclically repeated at runtime.

Dynamic scheduling is an online approach: the
running task decision is taken at runtime.

In scheduling theory a task model is
considered, where all tasks are periodic and where
each task, i, is characterized by the following
parameters: a fixed period, Ti, a hard deadline, Di,
and a fixed and known worst case execution time
(WCET), Ci.

The mechanism supported by all major
commercial real time operating systems is the
preemptive fixed priority scheduling where each
task is assigned a fixed priority value. During
runtime, the ready task with the highest priority gets
access to the CPU, meaning that if a task with a
lower priority is currently running, this one is
preempted by the higher priority task.

It is somehow natural to assume that for control
tasks their relative deadlines, Di, are equal to their

periods, Ti. The most common priority assignment is
the rate-monotonic (RM) assignment, where the
priorities are set according to the periods of the
tasks: the shorter the period, the higher the priority.

An alternative approach based on the absolute
deadlines of the tasks is earliest-deadline-first (EDF)
scheduling which exploits dynamic priority
assignment: the task with the shortest remaining
time to its deadline will get access to the CPU at any
point in time.

1.2 Control implementation
 In a computer-based control system the continuous
process output is sampled at regular time intervals
and converted to digital form by an A/D converter.
The control algorithm reads the sampled process
output and computes a control signal that is
converted by a D/A converter back to analog form.

A periodic control loop implementation is
shown in the Table1 pseudo code.

Table 1
t = currentTime();
LOOP
 Read Inputs;
 Control Compute (first part);
 Write Outputs;
 Update Internal States (second part);
 t = t + period;
 waitUntil(t)
 END

 The reading of inputs and writing of output
signals correspond to direct calls to external A/D

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 123

http://www.armyacademy.ro/

and D/A conversion interfaces and it is also possible
to have the sampling and actuation being performed
by dedicated tasks, when buffers are used to
communicate the values between the tasks.
 It is important to observe that a controller task
implementing a control loop (the control algorithm)
is divided into two parts in order to minimize the
input output delay: the first part computes the
control signal based on current measurements and
previous states, and the second part then updates the
internal states of the controller for the next sample.
Input-output latency is caused by preemption from
higher priority tasks and by the execution time of the
control algorithm itself.

2 The model of the control system
The case under study takes three control tasks
running concurrently on the same CPU, controlling
three different dynamic systems. The three systems
under control are second order system with different
dynamics: slow, middle and fast dynamics. The
corresponding controller task’s periods are different
according to the system’s dynamics: the faster the
dynamics, the shorter the period of the task.

The TrueTime computer block is connected
with ordinary Simulink blocks to form a real time
control system, see figure Fig. 1.

The control system model will be used in
simulations in order to demonstrate the effect of the
applied scheduling policy on the global control
performance. It is also studied the input-output
latency effect on the overall system stability.

3 Tools and simulations
There are numerous tools that support simulation of
control systems or simulation of real time

scheduling, but very few tools support co-simulation
of control systems and real time scheduling.

The True Time simulator is a complete co
simulation tool based on MATLAB/ Simulink and in
its current version it supports task scheduling by
arbitrary scheduling policies, network simulation by
standard MAC layer protocols, and a variety of real
time primitives used for experimentation with
flexible scheduling and compensation schemes.

The three systems are controlled by controller
tasks implemented in a TrueTime kernel block.
Before a simulation can be run, it is necessary to
initialize kernel block and to create tasks for the
simulation. The execution of tasks is defined by
code functions.

A code function is further divided into code
segments according to the execution model. All
execution of user code is done in the beginning of
each code segment. The execution time of each
segment should be returned by the code function.

The kernel is initialized by the initialization
script, providing the number of inputs and outputs,
the scheduling policy and creating periodic tasks
that uses defined code functions.

In the initialization script the scheduling is
specified by the function ttinitkernel and the task are
created with ttCreatePeriodicTask function who
specifies the name of the associated code function.

A sample of code function is given in Table 2.

Table 2

function [exec_time, data] = code_f1(seg, data)
switch seg,
 case 1,
 % read reference
 r = ttAnalogIn(data.rChan);
 % read process output
 y = ttAnalogIn(data.yChan);
 % calculate control signal
 [data.ctr, data.u] = calc_output(data.ctr, r, y);
 exectime = 0.006;
 case 2,
 ttAnalogOut(data.uChan, data.u);
 data.ctr = update_states(data.ctr);
 exectime = 0.002;
 case 3,
 exectime = -1; % task execution finished
end

Fig. 1 The control system Simulink model

Running the simulation of the control system,

seven graphics are obtained: three graphics for the
control signals u1, u2, u3, three graphics for the
reference and outputs signals y1, y2, y3 and the
schedule graphic of the tasks during the simulation.
Figure Fig. 2 shows the schedule graphic of the

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 124

tasks during the simulation and figure Fig. 3 shows
the output signal y3 compared with the reference
signal, in the EDF case.

3.1 Results
The simulations have considered the RM and the
EDF scheduling policy cases. The observed
characteristics in the graphics of the output signals
where: positive front overshoot +σ , negative front
overshoot −σ and the reference following delay ti.

Studying the computer schedule and the control
performance for these cases, the following are noticed:
- the three control loops are stable;
- the tasks meet their deadlines;
- in the RM case the best characteristics are

obtained for the third system controlled by the
task with the shortest period:

+σ =4,63%, −σ =4,6%, ti =0,43 s;
- in the EDF case the observed characteristics are

approximate the same for all the three output
signal y1, y2, y3, demonstrating that the
dynamic assignment of the task priorities
assures an equilibrate performance of the entire
embedded control system:

+σ =4,1%, −σ =4,1%, ti =0,4 s;

- although the RM scheduling is a fixed priority
policy, the slowest task may be active twice a period;

- in the EDF case, even if the tasks miss their
deadlines, the overall control performance
remains satisfactory.

In order to study the input-output latency effect, the
execution time of the first segment in the associated
function code of the task was gradually increased
and the following results were obtained:
- in the RM case, beginning with the 0.010 s

value of the execution time, only the first system
becomes unstable and the second system
presents 15-20% values of the overshoots, see
figure Fig. 4;

- in the EDF case, beginning with a larger value
of the considered first segment execution time, Fig. 2 Schedule graphic of the tasks:

task1 (blue), task2 (green), task3 (red) 0.016 s, all the systems become unstable.

 Conclusions

d nd simulations and the results

rmation
abou

wback with EDF is that it offers
no g

Fig. 3 Output signal y3 (blue) compared with
reference signal (green) Fig. 4 Unstable system1 (y1)

4
Un ertaken studies a
obtained have led to some conclusions and
considerations regarding not only the advantages
and disadvantages of applied scheduling policy, but
also regarding the technique of the simulation. The
work carried out is also highlighted by some
considerations about author’s contributions.

In order to assign priorities, global info
t the relative importance of all tasks in the

system is needed, which is not required to assign
deadlines. So, a first benefit of dead line based
scheduling over priority based scheduling is that it is
more intuitive to assign deadlines to tasks than to
assign priorities.

The main dra
uarantees at all during overload. In that case all

tasks will miss their deadline, (the domino effect),
and for hard real time systems this may be fatal.
However, the result during overload under EDF is
that the effective periods of the tasks will be scaled
in such a way that the utilization of the system is

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 125

still 100 per cent, so under reasonable overload, for
most control systems this fair distribution of
resources still give reasonable performance for all
control loops.

A priority based approach favors high priority
tasks

wback with dead line based
sche

ulation of the execution code
repre

the
simu

diffe

imulations were run verifying that the
con

 over low priority tasks, with the possible
consequence that low priority tasks may not execute
at all, being starved. Using dead line based
scheduling instead, the available CPU time is
distributed among the tasks in a more fair way and
better results concerning the performance and
stability of the control loops where obtained.
Depending on the application this may or may not
be a desired feature.

The major dra
duling is the lack of commercial products

supporting it.
The sim
senting the control algorithm, presents three

special aspects: the simulation was run at segment
code level, not at instruction level, each segment
may had a different execution time and the task
interacts with other tasks or with the environment,
only at the beginning of the each code segment.

The control system Simulink model and
lation presented method are also suitable to

other scheduling policies like FP (fixed-priority) and
DM (deadline-monotonic), by adapting the
initialization script with appropriate init function
parameters in the kernel block.

The systems under control are chosen with
rent dynamics: slow, middle and fast dynamics

in order to study the appropriate corresponding
controller task’s periods, which are different
according to the system’s dynamics: the faster the
dynamics, the shorter the period. By changing the
sampling period, resulting control performance is
revealed.

The s
trollers behave as expected and the effect of

different input-output delays were simulated by
gradually increasing the execution time of the first
segment of the associated code function.

Because of the fact that in embedded control
systems the tasks compete on shared computer
resources, two scheduling policies where applied
and the corresponding advantages and disadvantages
where established based both on observed
characteristics in the graphics of the output signals
compared with the reference and the schedule
graphic of the tasks. The simulation presented
method demonstrates that the dynamic assignment
of the tasks priorities assures an equilibrate
performance of the entire embedded control system
and supports larger values of the considered first
segment execution time in the associated function
code of the task.

The scheduling and execution of control tasks is
simulated in parallel with the continuous process
dynamics, demonstrating that the initialization script
is the simulation’s required piece, user defined and
supported by the TrueTime kernel block, that really
joins the two aspects and problems involved: task
scheduling and control.

References:
[1] Henriksson, D., A. Cervin, and K.-E. Årzén,

True-Time: Simulation of control loops under
shared computer resources, Proceedings of the
15th IFAC World Congress on Automatic
Control, Barcelona, Spain, 2002.

[2] Åström, B. Wittenmark, Computer Controlled
Systems, Prentice Hall, Upper Saddle River, N.J.,
1997.

[3] Cervin, A., Integrated Control and Real-Time
Scheduling, PhD thesis ISRN LUTFD2/TFRT--
1065--SE, Department of Automatic Control,
Lund Institute of Technology, Sweden, 2003.

[4] Årzén, K.-E., Real-Time Control Systems,
Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden, 2001.

[5] Liu, J. and E. Lee, Timed multitasking for real-
time embedded software, IEEE Control Systems
Magazine, 23:1, 2003.

[6] Ohlin, M., Henriksson, D., Cervin A., TrueTime
1.5—Reference Manual, Manual, Department of
Automatic Control, Lund University, Sweden,
January 2007.

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 126

