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Abstract: - This paper demonstrates some aspects of task scheduling policy effects on embedded control 
systems. This problem is studied because almost all control algorithms are realized by computers and 
controllers are often implemented as one or several tasks on a microprocessor with a real time operating 
system. The case of three tasks running concurrently on the same CPU and controlling three different dynamic 
systems is simulated in MatLab TrueTime toolbox environment. Embedded control systems are subject to 
limited computer resources that are in fact shared resources, for which the tasks compete. A priority based 
approach and a dead line based scheduling are confronted in order to establish advantages and disadvantages.  
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1 Introduction 
Embedded control systems study requires inter-
disciplinary knowledge of both control engineering 
and computer science and their inter-relations. 
 
 
1.1 Scheduling policy 
Real time scheduling theory deals with the problem 
of, given a set of tasks, finding an execution order 
that assures that all tasks meet their timing 
constraints. Scheduling algorithms fall in two 
categories: static and dynamic scheduling.  

Static scheduling is an offline approach: an 
optimized execution order is predetermined and this 
execution order is cyclically repeated at runtime. 

Dynamic scheduling is an online approach: the 
running task decision is taken at runtime. 

In scheduling theory a task model is 
considered, where all tasks are periodic and where 
each task, i, is characterized by the following 
parameters: a fixed period, Ti, a hard deadline, Di, 
and a fixed and known worst case execution time 
(WCET), Ci. 

The mechanism supported by all major 
commercial real time operating systems is the 
preemptive fixed priority scheduling where each 
task is assigned a fixed priority value. During 
runtime, the ready task with the highest priority gets 
access to the CPU, meaning that if a task with a 
lower priority is currently running, this one is 
preempted by the higher priority task.  

It is somehow natural to assume that for control 
tasks their relative deadlines, Di, are equal to their 

periods, Ti. The most common priority assignment is 
the rate-monotonic (RM) assignment, where the 
priorities are set according to the periods of the 
tasks: the shorter the period, the higher the priority. 

An alternative approach based on the absolute 
deadlines of the tasks is earliest-deadline-first (EDF) 
scheduling which exploits dynamic priority 
assignment: the task with the shortest remaining 
time to its deadline will get access to the CPU at any 
point in time.  
  
 
1.2 Control implementation 
 In a computer-based control system the continuous 
process output is sampled at regular time intervals 
and converted to digital form by an A/D converter. 
The control algorithm reads the sampled process 
output and computes a control signal that is 
converted by a D/A converter back to analog form.  

A periodic control loop implementation is 
shown in the Table1 pseudo code. 

Table 1 
t = currentTime(); 
LOOP 
         Read Inputs; 
         Control Compute (first part); 
         Write Outputs; 
         Update Internal States (second part); 
         t = t + period; 
         waitUntil(t) 
 END 

 The reading of inputs and writing of output 
signals correspond to direct calls to external A/D 
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and D/A conversion interfaces and it is also possible 
to have the sampling and actuation being performed 
by dedicated tasks, when buffers are used to 
communicate the values between the tasks. 
 It is important to observe that a controller task 
implementing a control loop (the control algorithm) 
is divided into two parts in order to minimize the 
input output delay: the first part computes the 
control signal based on current measurements and 
previous states, and the second part then updates the 
internal states of the controller for the next sample. 
Input-output latency is caused by preemption from 
higher priority tasks and by the execution time of the 
control algorithm itself. 
 
 
2   The model of the control system 
The case under study takes three control tasks 
running concurrently on the same CPU, controlling 
three different dynamic systems. The three systems 
under control are second order system with different 
dynamics: slow, middle and fast dynamics. The 
corresponding controller task’s periods are different 
according to the system’s dynamics: the faster the 
dynamics, the shorter the period of the task. 

The TrueTime computer block is connected 
with ordinary Simulink blocks to form a real time 
control system, see figure Fig. 1. 

The control system model will be used in 
simulations in order to demonstrate the effect of the 
applied scheduling policy on the global control 
performance. It is also studied the input-output 
latency effect on the overall system stability. 
 
 
3   Tools and simulations 
There are numerous tools that support simulation of 
control systems or simulation of real time 

scheduling, but very few tools support co-simulation 
of control systems and real time scheduling.  

The True Time simulator is a complete co 
simulation tool based on MATLAB/ Simulink and in 
its current version it supports task scheduling by 
arbitrary scheduling policies, network simulation by 
standard MAC layer protocols, and a variety of real 
time primitives used for experimentation with 
flexible scheduling and compensation schemes.  

The three systems are controlled by controller 
tasks implemented in a TrueTime kernel block. 
Before a simulation can be run, it is necessary to 
initialize kernel block and to create tasks for the 
simulation. The execution of tasks is defined by 
code functions. 

A code function is further divided into code 
segments according to the execution model. All 
execution of user code is done in the beginning of 
each code segment. The execution time of each 
segment should be returned by the code function. 

The kernel is initialized by the initialization 
script, providing the number of inputs and outputs, 
the scheduling policy and creating periodic tasks 
that uses defined code functions.  

In the initialization script the scheduling is 
specified by the function ttinitkernel and the task are 
created with ttCreatePeriodicTask function who 
specifies the name of the associated code function. 

A sample of code function is given in Table 2. 
 
Table 2 

function [exec_time, data] = code_f1(seg, data) 
switch seg, 
 case 1, 
   % read reference   
   r = ttAnalogIn(data.rChan); 
   % read process output 
   y = ttAnalogIn(data.yChan); 
   % calculate control signal 
   [data.ctr, data.u] = calc_output(data.ctr, r, y); 
   exectime = 0.006; 
 case 2, 
   ttAnalogOut(data.uChan, data.u); 
   data.ctr = update_states(data.ctr); 
   exectime = 0.002; 
 case 3, 
  exectime = -1; % task execution finished 
end 

Fig. 1 The control system Simulink model

 
Running the simulation of the control system, 

seven graphics are obtained: three graphics for the 
control signals u1, u2, u3, three graphics for the 
reference and outputs signals y1, y2, y3 and the 
schedule graphic of the tasks during the simulation. 
Figure Fig. 2 shows the schedule graphic of the 
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tasks during the simulation and figure Fig. 3 shows 
the output signal y3 compared with the reference 
signal, in the EDF case. 

 
 
3.1 Results 
The simulations have considered the RM and the 
EDF scheduling policy cases. The observed 
characteristics in the graphics of the output signals 
where: positive front overshoot +σ  , negative front 
overshoot −σ  and  the reference following delay ti.  

Studying the computer schedule and the control 
performance for these cases, the following are noticed: 
- the three control loops are stable; 
- the tasks meet their deadlines; 
- in the RM case the best characteristics are 

obtained for the third system controlled by the 
task with the shortest period:  

+σ =4,63%, −σ =4,6%, ti =0,43 s; 
- in the EDF case the observed characteristics are 

approximate the same for all the three output 
signal y1, y2, y3, demonstrating that the 
dynamic assignment of the task priorities 
assures an equilibrate performance of the entire 
embedded control system: 

+σ =4,1%, −σ =4,1%, ti =0,4 s; 

- although the RM scheduling  is a fixed priority 
policy, the slowest task may be active twice a period; 

- in the EDF case, even if the tasks miss their 
deadlines, the overall control performance 
remains satisfactory. 

In order to study the input-output latency effect, the 
execution time of the first segment in the associated 
function code of the task was gradually increased 
and the following results were obtained: 
- in the RM case, beginning with the 0.010 s 

value of the execution time, only the first system 
becomes unstable and the second system 
presents 15-20% values of the overshoots, see 
figure Fig. 4; 

- in the EDF case, beginning with a larger value 
of the considered first segment execution time, Fig. 2 Schedule graphic of the tasks: 

task1 (blue), task2 (green), task3 (red) 0.016 s, all the systems become unstable.   

 
 Conclusions 

d nd simulations and the results 
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wback with EDF is that it offers 
no g

Fig. 3 Output signal y3 (blue) compared with 
reference signal (green) Fig. 4 Unstable system1 (y1) 

 

4
Un ertaken studies a
obtained have led to some conclusions and 
considerations regarding not only the advantages 
and disadvantages of applied scheduling policy, but 
also regarding the technique of the simulation. The 
work carried out is also highlighted by some 
considerations about author’s contributions. 

In order to assign priorities, global info
t the relative importance of all tasks in the 

system is needed, which is not required to assign 
deadlines. So, a first benefit of dead line based 
scheduling over priority based scheduling is that it is 
more intuitive to assign deadlines to tasks than to 
assign priorities.  

The main dra
uarantees at all during overload. In that case all 

tasks will miss their deadline, (the domino effect), 
and for hard real time systems this may be fatal. 
However, the result during overload under EDF is 
that the effective periods of the tasks will be scaled 
in such a way that the utilization of the system is 
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still 100 per cent, so under reasonable overload, for 
most control systems this fair distribution of 
resources still give reasonable performance for all 
control loops. 

A priority based approach favors high priority 
tasks

wback with dead line based 
sche

ulation of the execution code 
repre

the 
simu

diffe

imulations were run verifying that the 
con

 over low priority tasks, with the possible 
consequence that low priority tasks may not execute 
at all, being starved. Using dead line based 
scheduling instead, the available CPU time is 
distributed among the tasks in a more fair way and 
better results concerning the performance and 
stability of the control loops where obtained. 
Depending on the application this may or may not 
be a desired feature. 

The major dra
duling is the lack of commercial products 

supporting it. 
The sim
senting the control algorithm, presents three 

special aspects: the simulation was run at segment 
code level, not at instruction level, each segment 
may had a different execution time and the task 
interacts with other tasks or with the environment, 
only at the beginning of the each code segment.  

The control system Simulink model and 
lation presented method are also suitable to 

other scheduling policies like FP (fixed-priority) and 
DM (deadline-monotonic), by adapting the 
initialization script with appropriate init function 
parameters in the kernel block. 

The systems under control are chosen with 
rent dynamics: slow, middle and fast dynamics 

in order to study the appropriate corresponding 
controller task’s periods, which are different 
according to the system’s dynamics: the faster the 
dynamics, the shorter the period. By changing the 
sampling period, resulting control performance is 
revealed. 

The s
trollers behave as expected and the effect of 

different input-output delays were simulated by 
gradually increasing the execution time of the first 
segment of the associated code function. 

 
 
 
 
 
 
 
 
 
 
 

Because of the fact that in embedded control 
systems the tasks compete on shared computer 
resources, two scheduling policies where applied 
and the corresponding advantages and disadvantages 
where established based both on observed 
characteristics in the graphics of the output signals 
compared with the reference and the schedule 
graphic of the tasks. The simulation presented 
method demonstrates that the dynamic assignment 
of the tasks priorities assures an equilibrate 
performance of the entire embedded control system 
and supports larger values of the considered first 
segment execution time in the associated function 
code of the task. 

The scheduling and execution of control tasks is 
simulated in parallel with the continuous process 
dynamics, demonstrating that the initialization script 
is the simulation’s required piece, user defined and 
supported by the TrueTime kernel block, that really 
joins the two aspects and problems involved: task 
scheduling and control. 
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