
1 Introduction
As implementation area of sensor networks is
wider, researches on relational database
approaches to sensor networks are being tried to
process and manage tremendous sensing data
which is gathered [1], [2], [3]. However there
might be some problems in applying directly the
traditional relational database concepts into a
sensor network.
In the case of an environment monitoring

sensor network, sensor nodes are deployed and
gather data in a broad area. Because each sensor
node sends data which is sensed at its location
to the base station, the base station is limited to
get data at the location at which each sensor
node is.
Let us assume a sensor network that is

consisted of two different classes of sensor
nodes, i.e. temperature sensor nodes and
humidity sensor nodes, and of which nodes are
scattered randomly. In this situation, how can we
pose a query to know the relationship between
temperature and humidity according to a
location? Though a join operation with
coordinates as join attributes seems to be a good

* This research was supported by the MIC(Ministry of
Information and Communication), Korea, under the
ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information
Technology Assessment)(IITA-2006-C1090-0603-0044)

solution, there is a critical problem. The reason
is that the traditional joins only allows exact
joining that occurs only when all join attribute
values are exactly same. There might be no or
few temperature and humidity sensor pairs of
which locations are exactly same, therefore, no
or few tuples can be participated with the join
operation.
For a solution about the above described

problems we propose in this paper the new
range join operators. It allows joining even
though the join attribute values are not same in
some range.
Applying a relational database with the range

join operators, we can pose a join query more
freely. It enables application code simpler and
can provide standard application interfaces.
The rest of this paper is structured as

follows. In Section 2 we present a brief
overview of the related works and Section 3
describes the range join operators in detail.
Finally, Section 4 concludes and finalizes this
paper.

2 Related Works
In a sensor network, database concepts,
especially relational database, are used to
manage tremendous data effectively. A sensor
network can be regarded as a database called to
the sensornet database. A tuple, in a sensornet
database, is configured with a sensing value, a

New Join Operator Definitions for Sensor Network Databases*

Seungjae Lee, Changhwa Kim, Sangkyung Kim
Department of Computer Science and Engineering

Kangnung National University
Jibyun-dong, Gangnung-si, Gangwon-do

KOREA
{silveree, kch, skkim98}@kangnung.ac.kr

Abstract: - Recently, researches on relational database approaches to sensor networks are being tried.
There occur, however, some problems in applying directly the traditional relational database concepts
into a sensor network in that every database operation is performed only on the real existing data
which are tuples in database relations. The reason is because in a sensor network viewpoint
situations under which some operations should be performed on non-existing data may occur
frequently. For instance, let us assume a sensor network that two different classes of nodes are
randomly scattered in the same area. We cannot get join results to know the relationship between
two different classes of sensing values because there might be no nodes at a exact same location.
For a solution about the above described problem we propose in this paper new join operators. This
new join operators can provide more effective data management and standard interfaces to
application programs in sensor networks.

Key-Words: - Database, Sensor network, Range join, Balanced range join, Imbalanced range join

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 41

sensing time, a node's location, etc. A set of
sensing values gathered from a class of sensor
nodes is treated as an attribute and a set of
tuples created by a class of sensor nodes is
treated as a relation[3].
A sensornet database has some different

features from a traditional database and
researches to overcome those differences are
going on, i.e., in-network processing of sensor
data, energy constraint, etc. Current researches
related to database operators in a sensornet
database can be classified with two categories.
First is researches on aggregation operators

reducing energy consumption of a whole
network and each sensor node. When a
aggregation query, like MIN, MAX, AVERAGE,
etc., is executed in sensornet database, it
requests sensor data not to all sensor nodes but
to a part sensor nodes or reduces the number of
requests and approximates a result. It enables to
reduce communication energy and extend the
lifetime of a whole sensor network [4], [5], [6],
[7], [8], [9].
Second, query processing for stream data is

another important one. In a traditional database,
an operand relation is always static and the
result is always static, too. In contrast to this,
tuples are created by sensors periodically or not
and the relation tends to be dynamic in a
sensornet database. This means that a relation in
a sensornet database is a non-blocking relation
and a query result for such relations is also
non-blocking. Researches for operations on
non-blocking relations are also proceeding [10],
[11], [12], [13].

3 Range Joins
The range joins are identical to the natural join
except three aspects. The first is that the
domains of each join attribute in the range join
must be subsets of real number. The second is
that the join attribute set of the range join is
allowed to be a subset of the intersection of
operand relations and defined by a user. The
third is that the range join allows to select
tuples of which are combined with different join
attribute values form the Cartesian product. The
natural join select tuples of which join attribute
values are exactly same from the Cartesian
product of operand relations. But the range join
allows to select tuples of which join attribute
values are not exactly same. It can be used to
join relations that have tuples of which join
attribute values are not exactly same but in an
allowable range.
Let us assume that there is a sensor network

which consists of temperature sensor nodes and

humidity sensor nodes. Each sensor node has
only one sensor and is deployed randomly in
two dimensional area. From a database point of
view, we can assume that there are two relations
which are temp(X, Y, T) and hum(X, Y, H). In
this situation, if a join is performed to know the
relationship between temperature and humidity
according to the locations, the result might be
an empty set or few tuples and we cannot
achieve the proper result. The reason is that
there the probability that a temperature sensor
node and a humidity sensor node are at exactly
same location is very small. Though we can
solve the above problem with the fundamental
operations, it might be too lengthy to express.
For a solution about the above problem, we

propose new operators called to range join
operator. It can be classified into two. One is
the balanced range join operator and the other is
the imbalanced range join operators. These range
join operators select tuples of which join
attribute values are similar within a given range
from the Cartesian product of relations. Where
the domains of each join attribute are subsets of
real number, a natural join can be treated as a
special case of range join.
Before introducing the range join operators in

detail, we define a terminology 'tuple vector'
needed to explain it.

Definition.
Where there is a relation of which schema is
 and an attribute set ′ ′′⋯′′
such as ⊃ ′ and each attribute domain of
′ is a subset of real number, a set of which
elements are sequences of all possible attribute
values ′′⋯′′ is . Therefore, a
sequence of 's attribute values which is
included within ′ , ′ ′′⋯′′, is
the tuple vector of tuple for the attribute set
′ .

3.1 Balanced Range Join Operator
The balanced range join operator selects tuples
of which the difference of join attribute values
is under a given value and its symbol is ⋈
similar to the natural join operator. At first, we
discuss the balanced range join for two relations
and then over three relations.

i) The balanced range join for two relations
Let us consider the balanced range join for

two relations. Where attribute sets of two
relation and are and each and the
balanced range join attribute set is
 ⋯ that satisfies ⊂ and
⊂ , the balanced range join for and is

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 42

represented as (1). Each attribute domain in
must be a subset of real number and is the
range constant that denotes the maximum
difference of join attribute values of tuples to be
selected from × . The schema of the balanced
range join is ∪ like the natural join.

⋈ or ⋈⋯ (1)
The process of the balanced range join has

three steps. First, select valid tuples from ×
and call it to the relation . For a tuple in
and a tuple in , if is a tuple combined
with and satisfying (2), is a valid tuple.
This means that a valid tuple is a combined
tuple with two tuple that the distance between
its vectors for is under .

 ≤ (2)
Second, add new attribute set to and

assign each ≤ ≤ with the mean value
of and . The balanced range join
attribute values of are like (3).

 ≤ ≤ (3)

Finally, remove attribute sets of and
from and finalize the range join operation.
If and ∩ , the result of the

balanced range join is identical with that of the
natural join.
For an example, let us assume that there is

a sensor network that consists of six temperature
sensors and six humidity sensors in two
dimensional area. The data generated from a
temperature sensor are the coordinate of the
sensor and temperature at the coordinate. All
data from all temperature sensor construct the
relation temp(X,Y,T). Similarly, data generated
from a humidity sensor are the coordinate of the
sensor and humidity at the coordinate. All data
from all humidity sensor construct the relation
hum(X,Y,H). X and Y is the coordinate of the
sensor node, T is temperature and H is
humidity. Tbl. 1 is an example for these two

relation.
Now, if we perform the natural join to know

the relationship temp with hum according to the
location, the result is an empty set and is not a
desired result because there is no tuple pair
which satisfies temp.X=hum.X and
temp.Y=hum.Y. In this case, the range join can
be a good solution if joining one sensor node
with nearby different kind of sensor nodes
within an admittable range is permitted. In this
case, we allow that two nodes of which distance
is under 10 are permitted to join. Therefore, the
range constant is 10 and the balanced range
join equation is as (4)

⋈ (4)
Tbl. 2 shows the distances between each

temperature sensor nodes and humidity sensor
node and there are 6 pairs of sensor nodes,
grayed values, of which distance is under 10.
The schema of the result relation is (X, Y, T,

H) and the result of (4) is shown at Tbl. 3.
Attribute values of X and Y is calculated by (3).

ii) The balanced range join for over three
relations
Now, let us consider the balanced range join

for relations, i.e. , , ⋯ , of which
schema is , , ⋯ , each. The result of

temp hum
Node ID X Y T Node ID X Y H
TS1 62 48 24 HS1 34 68 70
TS2 54 70 23 HS2 65 45 60
TS3 56 74 25 HS3 73 90 77
TS4 78 90 23 HS4 56 73 89
TS5 93 34 26 HS5 90 25 56
TS6 99 65 22 HS6 80 85 86

Table 1. An example of the temp and the hum relation.

TS1 TS2 TS3 TS4 TS5 TS6

HS1 34 20 23 49 68 65

HS2 4 27 30 47 30 39

HS3 43 28 23 5 59 36

HS4 26 4 1 28 54 44

HS5 36 58 60 66 9 41

HS6 41 30 26 5 53 28

Table 2. The distances between temperature sensors and
humidity sensors.

Node pair X Y T H

(TS1, HS2) 64 47 24 60

(TS2, HS4) 55 72 23 89

(TS3, HS4) 56 74 25 89

(TS4, HS3) 76 90 23 77

(TS4, HS6) 79 88 23 86

(TS5, HS5) 92 30 26 56

Table 3. The result of ⋈

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 43

the natural join is always same regardless of the
operation order like ⋈⋈ ⋈⋈
but not in the balanced range join operator.
⋈⋈ ⋈⋈ is not
satisfied, generally. A series of the range join
operator must not be treated as multiple join
operations but as just one operation. To avoid
confusion with a series of the natural join
operators, is put with the first join operator
symbol and is represented as (5). We must be
careful that (5) is not the combination of the
balanced range join and the natural joins but
just one balanced range join.

⋈⋈⋯⋈ or
⋈⋈⋯⋈⋯ (5)

The balanced range join for over three
relations is similar with that for the relations.
Because (5) is just one operation, it selects valid
tuples from the full Cartesian product
 × ×⋯× and we denote it to .
Where , , ⋯ , are tuples in , ,

⋯ , each and is a combined tuple with ,
, ⋯ , in , is a valid tuple if (6) is
satisfied. This means that Euclidean distances
between all tuple vectors for the join attribute
 , for those tuples of which a valid tuple
consist, are under .

 ≤ , ∀ ≤ ≤ (6)

After selecting valid tuples from , add new
attribute set to and assign each
 ≤ ≤ with a proper value. We use the
average values of the join attributes to be as
the balanced range join for two relations.
Therefore, the join attribute values of are the
averages of attribute values of tuples which
combine and are calculated by (7).

, ≤ ≤ (7)

Where and ∩∩⋯ in the

balanced range join for multiple relations, it also
can be treated as the natural join like
⋈⋈⋯⋈ and the result is identical with
that of the natural join.
For an example, let us consider the balanced

range join for three relations. We add the new
relation pres(X, Y, P) which represents air
pressure at each location. An example for pres
is shown in Tbl. 4.
Now, we want to know the relationship

between temp, hum and pres according to the
locations using the balanced range join. If we
permit to join tuples of sensor nodes within the
diameter 10, the balanced range join operation is
as (8).

⋈⋈ (8)
Tbl. 5 shows the distances between pressure

sensor nodes with temperature and humidity
pres

Node ID X Y T
PS1 54 57 1014
PS2 62 43 1020
PS3 58 75 1012
PS4 45 96 1008
PS5 80 83 1016
PS6 95 30 1017

Table 4. An example of the pres relation.

Node pair X Y T H T

(TS1, HS2, PS2) 63 45 24 60 1020

(TS2, HS4, PS3) 56 73 54 89 1012

(TS4, HS6, PS5) 79 86 78 86 1016

(TS5, HS5, PS6) 93 30 93 56 1017

Table 6. The result of ⋈⋈

(a) The distances temperature sensor nodes with
pressure sensor nodes

TS1 TS2 TS3 TS4 TS5 TS6
PS1 12 13 17 41 45 46
PS2 5 28 32 50 32 43
PS3 27 6 2 25 54 42
PS4 51 28 25 34 78 62
PS5 39 29 26 7 51 26
PS6 38 57 59 62 4 35

(b) The distances humidity sensor nodes with pressure
sensor nodes

PS1 PS2 PS3 PS4 PS5 PS6
HS1 23 38 25 30 48 72
HS2 16 4 31 55 41 34
HS3 38 48 21 29 10 64
HS4 16 31 3 25 26 58
HS5 48 33 59 84 59 7
HS6 38 46 24 37 2 57

Table 5. The distances pressure sensor nodes with other
sensor nodes

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 44

sensor nodes. In Tbl. 2 and Tbl. 5, we can find
four pairs of node which is in the diameter 10.
These are (TS1, HS2, PS2), (TS2, HS4, PS3),
(TS4, HS6, PS5) and (TS5, HS5, PS6).
Therefore, the schema of the result relation

is (X, Y, T, H, P) and the result of (8) is
shown at Tbl. 6. Attribute values of X and Y is
calculated by (7).

3.2 Imbalanced Range Join Operator
The imbalanced range join is divided into the
left range join and the right range join. It does
not calculate join attribute values of the result
relation but assigns the join attribute values of
the left or right most relation to those of the
result relation.
The processes of the imbalanced range join

are like below. First, select valid tuples from the
Cartesian product of operand relations. In the
case of the left range join operator, it assigns
the join attribute values of the left most relation
to those of the result relation and is denoted by

like (9). The join attribute values of the⟕
result relation are those of in this case.

⟕ or ⟕⋯ (9)
For right range join, is used for⟖

expression as (0) and the join attribute values of
the result relation are those of in this case.

⟖ or ⟖⋯ (10)
We call the relation at (9) and at (10)

to the anchor relation of the imbalanced range
join because the attribute values of only the
relation are unchanged.
In fact, the imbalanced range join operators

are additional operators which are expressed by
using the fundamental operators and we express
(9) and (10) as (11) and (12) where in is
 and in is .

⟕ ∪ ≤ × (11)

⟖ ∪ ≤ × (12)

For an example of the left range join, the
result of ⟕ for Tbl. 1 is as
Tbl. 7.
In the case of the left range join for

relations, i.e. , , ⋯ , , symbol appears⟕
just once at first as (13) and , the left most
relation in the equation, is the anchor relation.
In right join operator, appears just once at⟖
last as (14) and , the right most relation in
the equation, is the anchor relation.

⟕⋈⋯⋈ or
⟕⋈⋯⋈⋯ (13)

⋈⋈⋯⟖ or
⋈⋈⋯⟖⋯ (14)

We can express (13) as (15) by the
fundamental operators where is in
⟕⋈⋯⋈
∪∪ ⋯ ∪
 ≤ ∧ ≤ ∧ ⋯ ∧ ≤ × ×⋯×

(15)

 , ≤ ≤

In the same way, (14) is expressed as (16)
where is in .
⋈⋈⋯⟖
∪∪ ⋯ ∪
 ≤ ∧ ≤ ∧ ⋯ ∧ ≤ × ×⋯×

(16)

 , ≤ ≤

In contrast to the balanced range join, the

Node pair X Y T H T

(TS1, HS2, PS2) 62 48 24 60 1020

(TS2, HS4, PS3) 54 70 23 89 1012

(TS3, HS4, PS3) 56 74 25 86 1012

(TS4, HS3, PS5) 78 90 23 86 1016

(TS4, HS6, PS5) 78 90 23 86 1016

(TS5, HS5, PS6) 93 34 26 56 1017

Table 8. The result of ⟕⋈
Node pair X Y T H

(TS1, HS2) 62 48 24 60

(TS2, HS4) 54 70 23 89

(TS3, HS4) 56 74 25 89

(TS4, HS3) 78 90 23 77

(TS4, HS6) 78 90 23 86

(TS5, HS5) 63 34 26 56

Table 7. The result of ⟕

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 45

imbalanced range join does not use (6) but
logical AND of at (15) or (16). This means
that if satisfies (17) for all ≤ ≤
then is selected as a result tuple where is
a tuple in the Cartesian product and combined
with , , ⋯ , in , , ⋯ , each and
 ≤ ≤ is the anchor relation.

 ≤ , ∀ ≤ ≤ (17)

Where and ∩∩⋯ in the
imbalanced range join, it also can be treated as
the natural join like ⋈⋈⋯⋈ and the
result is identical with that of the natural join.
For an example of the left range join for

three relations, the result of
⟕⋈ for Tbl. 1 and Tbl. 4
is as Tbl. 8 and is different from Tbl. 6. In this
cast, the relation temp, the left most relation, is
the anchor relation.

4 Conclusion
Sensor nodes are deployed non-continuously in
space and its locations are appeared as points.
Therefore we can get sensing data at locations
where sensor nodes are but cannot at elsewhere.
In this paper, we proposed the new join

operators to performing join operation on similar
join attribute values. Adapting this operator to a
sensor network database, a user can simply pose
a query that needs to join relations having
similar join attribute values. This also can
provide a standard interface to application
programs and ensure more robust system.
The range join operators are very useful

especially for the sensor networks that consist of
several kinds of sensor nodes. It supports more
flexible join operation including the natural join
by enabling join operation on not only exact
same join attribute values but also similar them.
As shown above, applying a database using

the proposed join operator to a sensor network,
more flexible join operation can be performed
and a standard interface can be supplied to
application programs from database level.
A query optimization method for a virtual

selection operator and a topology adaptive
estimate method are important research topics
and those will be explored in the future.

References:
[1] Philippe Bonnet, Johannes Gehrke, and

Graveen Seshadri, Towards sensor database
systems, In Mobile Data Management, 2001,
pp. 3-14

[2] M. Srivastava, R. Muntz, and M. Potkonjak.:
Smart Kindergarten, Sensor-Based Wireless

Networks for Smart Developmental
Problem-Solving Environments, In
Proceedings of the Seventh Annual
ACM/IEEE International Conference on
Mobile Computing and Networking, 2001

[3] R. Govindan, J. Hellerstein, W. Hong, S.
Madden, M. Franklin, and S. Shenker, The
Sensor Network as a Database, Technical
Report 02-771, Computer Science
Department, University of Southern
California, 2002

[4] J. M. Hellerstein, W. Hong, S. Madden, and
K. Stanek, Beyond average: Toward
sophisticated sensing with queries, In
Information Processing in Sensor Networks:
2nd Intl. Workshop, Springer-Verlag, LNCS
2634, 2003, pp.63-72.

[5] S. Madden, M.J. Franklin, J. Hellerstein, and
W. Hong, Tag: a tiny aggregation service
for ad-hoc sensor networks, In Proc. of
OSDI '02, 2002

[6] N. Shrivastava, C. Buragohain, D. Agrawal,
and S. Suri, Medians and beyond: New
aggregation techniques for sensor networks,
In Proc. of Sensys'04, 2004

[7] Joseph M. Hellerstein, Peter J. Haas, and
Helen J. Wang, Online Aggregation, In
Proc. ACM SIGMOD International
Conference on Management of Data, 1997

[8] T. Friedman and D. Towsley, Multicast
Session Membership Size Estimation, In
Proc. of IEEE Infocom, 1999

[9] W. Hou, G. Ozsoyoglu, and B. Taneja,
Statistical estimators for relational algebra
expressions, In Proc. Seventh ACM
SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems(PODS),
1988, pp.276-287

[10] Johannes Gehrke, Samuel Madden, Query
Processing in Sensor Networks, IEEE CS
and IEEE ComSoc, 2004

[11] Annita N. Wilschut and Peter M. G. Apers,
Dataflow query execution in a parallel
main-memory environment, Distributed and
Parallel Databases, 1(1), 1993, pp.103-128

[12] Peter J. Hass and Joseph M. Hellerstein,
Ripple Joins for Online Aggregation, In
Proc. ACM-SIGMOD International
Conference on Management of Data, 1999,
pp.287-298

[13] S. Madden and M. Franklin, Fjording The
Stream: An Architecture for Queries over
Streaming Sensor Data, In Proceedings of
the 18th International Conference on Data
Engineering, San Jose, CA, 2002

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 46

