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Abstract-- This paper investigates the ability of a new heuristic optimization method known as Curved Space 
Optimization (CSO) to deal with optimal placement of Static Var Compensators (SVCs) in a large power system 
based on its primary function, where the optimization is made on two parameters: its location and size.  The 
primary function of a SVC is to improve transmission system voltage, thereby enhancing the maximum power 
transfer limit. To validate the results obtained by CSO, Particle Swarm Optimization (PSO) Algorithm is 
applied.  The results show CSO finds the optimal solution in finding the location and size of SVC.  

 
Key-Words -- Curved Space Optimization, Particle swarm optimization, Voltage stability, Power system, 

FACTs devices, SVC. 
. 
 
1 Introduction 
Over the last decades there has been a growing 
interest in algorithms inspired from the observation 
of natural phenomenon. It has been shown by many 
researches that  these algorithms are good 
replacement as tools to solve complex computational 
problems. Various heuristic approaches have been 
adopted by researches including genetic algorithm, 
tabu search, simulated annealing, ant colony and 
particle swarm optimization. 
Due to many good features of GA techniques, GA 
has been widely applied in applications, such as 
optimization of objective functions, training neural 
networks, tuning fuzzy membership functions, 
machine learning, system identification, control, etc. 
Also, study on the use of genetic algorithm to seek 
the optimal location of FACTS devices in a power 
system is carried out by the researches around the 
world [1]-[9]. 
Recently, Kennedy and Eberhart introduced the 
Particle Swarm Optimization (PSO) method as an 
evolutionary computation technique [10]. The 

original version of the PSO operates in continuous 
space [10] was extended to operate on discrete binary 
variables [11]. The PSO has been proven to be very 
effective for static and dynamic optimization 
problems. For the first time, the PSO is applied in 
power systems in 1999 [12], and has been 
successfully applied to various problems such as 
power system stabilizer design, reactive power and 
voltage control, and dynamic security border 
identification.  
Curved Space Optimization (CSO), was introduced 
by Farrahi-Moghaddam [13] and in this paper the 
capability of this algorithm in solving a problem is 
investigated. 
In the last decades, efforts have been made to find 
the ways to assure the security of the system in terms 
of voltage stability. It is found that flexible AC 
transmission system (FACTS) devices are good 
choices to improve the voltage profile in power 
systems that operate near their steady-state stability 
limits and may result in voltage instability. Many 
studies have been carried out on the use of FACTS 
devices in voltage and angle stability.  Taking 
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advantages of the FACTS devices depends greatly on 
how these devices are placed in the power system, 
namely on their location and size.  
 In view of this, this paper considers the problem of 
placing SVC using CSO and PSO in a large power 
system to maintain the nodal voltage magnitudes. 
The problem formulation is how to place SVC that 
provides compensation for reactive power in a power 
system. For this, SVC is placed in a large power 
system based on its primary function, which is the 
voltage stability. 
 
 
2 Voltage Stability Analysis 
Voltage stability is the ability of a power system to 
maintain acceptable voltages at all buses in the 
system not only under normal operation, but also 
after following disturbances. Voltage stability can be 
categorized as large-disturbance and small-
disturbance voltage stabilities.  Large–disturbance 
voltage stability is the ability of the system to control 
the voltage after being subjected to large 
disturbances such as system faults, and loss of load 
or generation.  Small signal voltage stability is the 
ability of the system to control voltage after being 
subjected to small perturbations, such as gradual 
changes in loads [14].  
In this paper two techniques are used for analysis of 
voltage stability, which are briefly explained below: 
   
 

2.1  CSO  algorithm 
The first step is initialization where the first 
generation (n) is distributed randomly over all of 
variables space. Any member of population is known 
as mass. Then the fitness will be computed for each 
mass. In CSO finding the best solution in each 
generation and moving to the next generation is done 
as follows: the CSO algorithm draws curves for the 
variables space around the masses (n) according to its 
fitness (this is very similar to the relativity theory for 
mass and space). Therefore, we have a space with n 
curves where, at some places, the curvature is very 
high, and there are some regions in which the 
curvature is very small.  On the other hand, a fitness 
is calculated for each mass. For a mass with higher 
fintness the curvature is higher comparing to the 
other masses.  Consider a transformation, x’ = A(x) 
that can define the curvature for each mass. The old 

axis is defined by x, and the new axis defined by x’. 
There is a transformation, x’ = A(x), which relates the 
x values to the x’ values according to the curvature of 
the space. The new points  are selected randomly 
from the x’ axis instead of the x axis. In fact, in each 
step the axis and its curvature are changed by 
considering x’ = A(x). Then, the selected points are 
transforms from the x’ axis to the x axis using A(x). 
These new x points are the new selected points in x 
space. It is obvious that the new points are 
accumulated around the high-fitness points of the 
previous generation.  
At the first stage of the algorithm, the dominance of 
the curvatures will be large in order to cover the 
entire space variable. As the algorithm continues, the 
dominance of the curvatures will be reduced. For 
this, a radius of dominance is defined as ρ  in which 
the radius is reducing by following equation: 
         (1) Ddii

d ,,2,11 …==+ αρρ
where α is a parameter between 0 and 1 and d is the 
dimension of the problem. 
As it was discussed in the previous subsection, in 
CSO algorithm, in each step, the axes of the variables 
space are changed. In the  other words, the variables 
space is changed, and this change must be computed 
from the transformation function A(x), which is 
needed to obtain the next generation. In order to 
reduce the computational cost of algorithm, we can 
find some ways which give the results without any 
need to the explicit form of A(x). For doing so, the 
curvature idea is replaced with some other techniques 
which have the same effects in selection of new 
points. The technique is based on the introduction of 
a probability function over the variables space. 
In the simplest case, the probability function can be 
considered as a number of hyper-cubes which every 
of them is around one of the previous generation 
points (masses). The dimensions of the  hyper-cubes 
are defined according to the dimension of search 
space and equation (1).  At the first stag of the 
algorithm, the dimension of hyper-cubes is equal to 
all of the points in the search space defined by 
following equation: 

2

low
d

high
dd xx −

=ρ              (2) 

The probability function for the ith  mass according to 
the rank of its fitness ( ) defined as follows: )(ir
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where β  is a controllable parameter that controls the 
selection pressure. 
Although, for all values of α  there is a chance that 
the algorithm be trapped around a local minimum. 
This leads us to the concept of mutation, which used 
in genetic algorithm. The mutation method which is 
used in the algorithm is the same as that of genetic 
algorithm.               
 
 

2.2  PSO  algorithm 
PSO is as an optimization tool that provides a 
population-based search procedure in which 
individuals, called particles, change their positions 
with time. In a PSO system, particles fly around in a 
multidimensional search space. During flight, each 
particle adjusts its position according to its own 
experience, and the experience of neighboring 
particles, making use of the best position encountered 
by itself and its neighbors. Particles in the PSO are 
defined by two variables: x  and v  in which x  is the 
position of the particle representing a candidate 
solution to the problem and describes the velocity. v
In the PSO, two different definitions are used as: the 
individual best and the global best. As a particle 
moves through the search space, it compares its 
fitness value at the current position to the best fitness 
value it has ever attained previously. The best 
position that is associated with the best fitness 
encountered so far is called the individual best 
known or pbest. The global best, or gbest, is the best 
position among all of the individual’s best positions 
achieved so far. 

Using the gbest and pbest, the  particle velocity 
in the  dimension is updated according to the 
following equation: 

thi
thd

BcActvwtv idid ..)(.)1( 21 ++=+         (4) 
where ,   

))(( txpbestrandA idid −= ,
 , ))(( txgbestRandB idid −=

w  is inertia weight factor,  and  are acceleration 
constant,  and  are random number 
between 0 and 1. 

1c 2c
()rand ()Rand

Based on the updated velocities, each particle 

changes its position according to the following 
equation: 

)1()()1( ++=+ tvtxtx ididid            (5)  
 
 
3 Study system 
A 5-area-16-machine system: The study system is 
shown in Fig. 1, consisting of 16 machines and 68 
buses. This is a reduced order model of the New 
England (NE) New York (NY) interconnected 
system. The first nine machines are the simple 
representation of the New England system 
generation. Machines 10 to 13 represent the New 
York power system. The last three machines are the 
dynamic equivalents of the three large neighboring 
areas interconnected to the New York power system.  
Modal analysis, CSO and PSO are used to locate 
SVC optimally in the power system shown in Fig. 1.  
Implementations of the two different techniques are 
presented below.  

Placing of SVC using CSO and PSO starts from an 
initial load. All loads are increased gradually near to 
the point of voltage collapse, all at once.  Fig. 2 
shows the profile of the voltage when system is 
heavily stressed and is reached to the point of 
collapse. 
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 Fig. 1.  Single line diagram of a 5-area study 
system. 
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Fig. 2.  Bus voltage magnitude profile when 
system is heavily stressed. 

 
The goal of the optimization is to find the best 
location of SVC where the optimization is made on 
two parameters: their location and size.  Therefore, a 
configuration is considered with two dimensions. 
The number of masses is set to be 50 that are 
generated randomly. 
In this paper SVC is placed based on its primary 
function, which is the voltage stability. For a level of 
loads, the following objective function is minimized: 

6

∑ −= irefi VVabsobj             (6) 

where    is the voltage magnitude and  is the 
nominal voltage at bus i  .       

iV refiV

 In this paper, α  is considered to be 0.9 and β  is set 
to be 1.2. Also, the number of iteration is considered 
to be 70, which is the stopping criteria. 
In the PSO algorithm,  particles are generated 
randomly where n  is selected to be 50.  Since 
optimizations are made on two parameters: its 
location and size, therefore, each particle is a d -
dimensional vector in which .  The initialization 
is made on the position randomly for each particle.   

n

2=d

As in the CSO, the number of iteration is considered 
to be 70. The parameter in (4) must be tuned. These 
parameters control the impact of the previous 
velocities on the current velocity where, in this paper, 

and  is decreasing linearly from 0.9 to 
0.1.   

221 == cc w

Each particle in the population is evaluated using the 
objective function defined by (6), searching for the 
particle associated with .  The best previous 
position of the  particle is recorded and 
represented as:  and the 

index of the best particle among all of the particles in 
the group is for the gbest.  

bestobj
thi

),( 2,1, iii pbestpbestpbest =

Using the gbest and pbest, particle velocity and 
position is updated according to (4) and (5).. 
To locate SVC by CSO and PSO, suitable buses are 
selected based on 20 independent runs, under 
different random seeds.  At the end of the 20 
independent runs, the following results are observed 
by CSO: 90% of the results show that the SVC 
should be placed at bus 40 with 145 MVAr size; 10% 
of the results show that the SVC should be placed at 
bus 48. Also, the following results are observed by 
PSO: 80% of the results show that the SVC should be 
placed at bus 40 with 145 MVAr size; 20% of the 
results show that the SVC should be placed at bus 48.  
Fig. 3 shows bus voltage magnitude profile of the 
stressed system after placing a 145 MVar SVC at bus 
40.   
The results obtained by CSO and PSO are averaged 
over independent runs. The average best-so-far of 
each run are recorded and averaged over 20 
independent runs. To have a better clarity, the 
convergence characteristics in finding the location 
and size of a SVC is given in Fig. 4.  These figures 
show that CSO has a good capability to find optimal 
solution.  
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Fig. 3.    Bus voltage magnitude profile of the 
stressed system after placing 145 MVar SVC at 
bus 40. 
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Fig. 4.  Convergence characteristics of CSO and 
PSO on the average best-so- far in finding the 
solution, 145  MVar SVC at bus 40. 

 
 
 
4 Conclusion 
In this paper, CSO and PSO are applied to place SVC 
in a power system. CSO and PSO identify the same 
bus that is vulnerable to the voltage collapse.   Both 
CSO and PSO give the same level of compensation 
for the SVC. Although the results obtained by SVC 
and PSO are the same but CSO quickly finds the 
high-quality optimal solution in finding the location 
and size of SVC.   The obtained result shows that 
CSO has a great potential in solving complex power 
system problems and should be applied to other 
problems. To have an optimal placement for SVC, 
multi-objective VAr planning should be considered 
which, is the future work of the authors. 
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