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Abstract: - The identification problem of nonlinear model for electroless nickel plating is considered in this 
paper. The identification method is developed for estimation of the constant electrochemical parameters and 
time-varying mixed potential parameters. The efficiency of the method proposed is demonstrated in the 
simulation experiment. 
 
Keywords: - time-varying, nonlinear, identification, mixed potential, approximation 
 
1 Introduction  
Electroless nickel plating is a widely used process in 
electronic industry. Unlike electric nickel plating it 
produces a very uniform alloy and has good 
corrosion protection properties. However, a precise 
control is required in microchip industry because of 
increasingly higher packing rate. The goal of the 
process control is to stabilize the thickness and 
phosphorus content of an alloy at desired level. In the 
literature several mathematical models of the process 
were developed [1]-[8] in the framework of chemical 
and electrochemical reaction theory. The mixed 
potential theory is developed in [4]-[6]. In [7] and [8] 
a complete model for monitoring of the unobservable 
nickel plating process was proposed and control 
algorithm was developed. The model proposed is 
highly nonlinear and to improve control quality 
several constant parameters and time-varying mixed 
potential parameters have to be estimated. 

In this paper estimation problem of the unknown 
parameters for the electroless nickel plating model is 
studied and identification procedure is proposed. 
 
 
2 Process model 
The general structure of the process model is 
depicted in Fig. 1 (for details, see [7]). 

The model is composed of the dynamic linear 
block in series connection with two static nonlinear 
blocks F1 and F2 and controller F3. A set of ordinary 
linear differential equations is used to describe 
concentration dynamics of the process. Concentration 
of species affects the equilibrium potentials (F1 
block) and equilibrium potentials in its turn affect to 
the current densities of the electrode reactions (F2 
block). 
 
 
   This work was supported by Academy of Finland through Graduate 
School in Electronics, Telecommunication and Automation. 

 

State-space representation of the concentration 
dynamics and nonlinear function F1 are assumed to 
be known. State variable c is also assumed to be 
observable. According to the Nernst equation [4], 
equilibrium potentials of the electrode reactions can 
be evaluated from concentration of substances due to 
the assumptions above. 
 

fc Ai BQ= + ( )1u F c= ( )2i F u=

( )3fQ F c=

 
Fig. 1 The process model 

 
The static nonlinear block F2 can be represented by 
system of Volmer-Buttler equations, which 
correspond to four reactions of the process: 
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where 
ij – current densities, A/cm2, 
i0j – exchange current densities, A/cm2, 
αaj – anodic apparent transfer coefficients, 
A – loading factor, 
Amax – maximum admissible loading factor, 
k – temperature voltage (constant), V-1,  
Uj – equilibrium potentials, V, 
Φ – mixed potential, V. 
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Mixed potential in (1) is unobservable function in 
time. With respect to the mixed potential it is known 
that it satisfies to the charge conservation equation: 
 

i1 + i2 + i3 + i4  =  0.                 (2) 
 
The model (1) is known as two-directional electrode 
model, because it is represented as difference 
between anodic and cathodic current densities. 

The loading factor, defined as the total metal area 
of plates immersed in the solution per bath volume, is 
strongly jumping and observable process. 

The objective is to identify the exchange current 
densities and anodic apparent transfer coefficients of 
the electrode reactions as well as mixed potential 
function using available measurements of 
concentration c, current density i and loading factor 
A.  
 
 
3 Identification method 
We start from excluding loading factor from the 
further analysis. Take into consideration scaled 
current densities: 

 
( ) ( ) ( )( ){ , max , ,A j ji t i t A A t j= ⋅ =1 4 .   (3)  

 
According to (3) the system of equations (1) reduces 
to the next form: 
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It should be emphasized that since the loading 

factor A enters to every equation of (1) with the 
same factor charge equation (2) still holds for 
scaled current densities. 

Though the model (4) is nonlinear, we, 
nevertheless, can use linearization technique to 
estimate unknown parameters. This is because the 
control objective in electroless nickel plating is 
stabilization for thickness of the alloy. In terms of the 
model this means stabilization of mixed potential and 
equilibrium potentials of the reactions. So the 
variation of overpotentials is small enough to use 
equivalent to (4) linear model. 

To turn to linear model for (4) we create the 
1st order Taylor series expansion of the current 
densities at Φ-Uj: 
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with overpotential ηj being defined as 
 

ηj = Φ - Uj .      (6) 
 
Now the system (4) can be represented in linear 
form as 

 
( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )( ) ( )

,

,

,

,

A

A

A

A

ì a b U U o

ì a b U U o

ì a b U U o

ì a b U U o

η

η

η

η

⎧ = + Φ − Φ − − +
⎪
⎪ = + Φ − Φ − − +⎪
⎨

= + Φ − Φ − − +⎪
⎪

= + Φ − Φ − − +⎪⎩

1 1 1 0 1 01 1

2 2 2 0 2 02 2

3 3 3 0 3 03 3

4 4 4 0 4 04 4

,   (7) 

where 
( ) ( ), ,, ,  , ,  ,j A j j j A j ja i U b i U j′= Φ = Φ =0 0 0 0 1 4 .     (8) 

 
Combining all free terms in every equation of (7) 
into one  

 
dj = aj - bj(Φ0 - U0j)    (9) 

 
and ignoring approximation error we obtain the 
next equivalent form of (3): 
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By summing all four equations in (10) and using 
charge conservation identity (2) we derive the 
next expression for mixed potential Φ: 
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Emphasize that equation (11) gives the 
straightforward way to estimate time-varying 
mixed potential provided that we know estimates 
of unknown coefficients bj and dj. 

The substitution of the (11) to (10) allows us 
to eliminate the mixed potential and to represent 
the system (10) as: 
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with ΔUij(t) = Ui(t) - Uj(t) and γi, βij being 
defined as 
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Note, that the next identities are hold: 
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The regression vector for (12) is given by: 

 
[ ]        Tθ γ γ γ β β β β β β= 1 2 3 12 13 14 23 24 34 . (18) 

 
And regression matrix is: 

 
[ ]     X U U U U U U= Δ Δ Δ Δ Δ Δ21 31 41 32 42 43 .  

 
Take into attention that we deal with multi-

objective optimization problem, because coefficients 
(18) have to be chosen to satisfy to four different 
equations of the system (12). One way to operate 
with multi-objective problem is to transform it to 
single-objective problem. For example, sum of four 
objectives with weights ωk leads to the next function 
to be minimized:  
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Now the optimization problem is to find coefficients 
βij and γi which minimize objective function (19) 
subject to constraints (15)-(17). This problem can be 
solved by nonlinear least squares method or, in well-

posed case, subject to only linear constraints (15), 
(16) by conventional least squares method.  

The optimality conditions require first derivatives 
of (19) with respect to regression vector (18) to be 
zero in optimum point: 
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Setting the first derivatives (20)-(28) to zero 
produces a linear system of 9 equations in 9 
variables. Such system is solvable and its solution is 
unique if the matrix of coefficients has full rank. 
Although, due to charge conservation identity and 
small approximation error this problem is ill-posed 
for identification purposes we always can add input 
noise to improve posedness of the problem.  

Solution of (20)-(28) subject to constraints (15)-
(16) is the least squares solution of the optimization 
problem with respect to parameter vector (18). 

Some transformation from found parameters to 
primary parameters of interest is required, because 
parameter vector (18) is not one we are interested in. 
We call this transformation as inverse transformation. 
According to the structure of expressions (13), (14) it 
consists of two steps. The first step is to find bi 
provided that βij are given. Due to the constraints 
(16), (17) any four of the coefficients βij are 
independent. Hence the system to find linear part of 
Taylor series expansion bi looks, for instance, as 
follows: 
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The straightforward way to solve the system (29) is 
to find partial ratios between, for instance, b1 and b2, 
b3, b4. They are: 
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Now the sum of the coefficients is given by: 
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Finally we will have the next solution of (29): 
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According to equation (13) the second step is to find 
di provided that γi and bi are given. Unfortunately, 4 
unknown coefficients have to be identified and only 
3 of them are linearly independent due to constraint 
(15). To overcome this problem and make inverse 
transformation we will use mean value of mixed 
potential. The idea is to assume, that we know one of 
di, for instance d4. Then the system to identify others 
di is given by: 
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Clearly, the system (32) is linear and can be solved 
by classical gaussian elimination method.  The 
solution is then expressed as linear function of d4. 
Denote 
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Now the next solution can be obtained: 
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Based on identities (33)-(35) we rewrite expression 
for mixed potential (11) as follows: 
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Since the coefficients bj were identified before, 
equation (36) contains only one unknown variable d4. 
Assumption about known mean value of mixed 
potential helps to find it. Necessitate mean value of 
the identified mixed potential function to be equal to 
its value in linearization point: 
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where N is number of available samples. By taking 
into account (36) we rewrite equation (37) as: 
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The next solution of equation (38) for d4 can be 
found:  
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Now based on the system (32) we are able to 
evaluate others di and then starting from the identity 
(9) 
 

dj = aj - bj(Φ0 - U0j), 
 

we can evaluate coefficients of Taylor series 
expansion (5) for all reactions. Then the separate 
nonlinear systems to identify parameters of two-
directional model due to (2) are given by: 
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Finally after calculating exchange current densities 
from the first equation of (39) and substituting these 
to the second equation we obtain the solution of (39) 
which is given by: 
 

( )

,  ,

j j

j j

k j j
j

j jk j jj j j j

k
jopt

aj k
j j

jopt
j b ek

a k ke

b e
a k e

ja
i

e e

η

η

η

η

η
η

α

−

−

−

−

⎛ ⎞
⎜ ⎟−
⎜ ⎟ −−⎝ ⎠

⎡
= −⎢

−⎢
⎢ =
⎢ =
⎢
⎢ −⎢⎣

0

0

0

00
01

1

1 4

1

. (40) 

 

Resulted expressions (40) give a way to estimate 
parameters of the two-directional electrode model (1) 
on condition that Taylor series expansion coefficients 
are known.   

The overall identification procedure consists of the 
following steps: 

1. Specify mixed potential linearization point. 
2. Calculate equilibrium linearization points 

based on available measurements. 
3. Find least-squares solution of linear problem 

(12). 
4. Calculate Taylor series expansion coefficients. 
5. Calculate estimates of the parameters 

according to equation (40). 
6. Evaluate mixed potential curve. 
The best estimate we can achieve without 

knowledge of the noise structure is bounded by the 
approximation error. In other words we can’t achieve 
the true values of estimated parameters due to 
unaccounted approximation errors. But, if 
overpotential (6) varies a lot, a way to reduce 
approximation error is data clustering, identification 
of parameters on every cluster independently and 
then combining the results. 
 
4 Results and discussion 
Example 1.  

Here we show the best possible estimate of the 
unknown parameters. The true values for parameters 
to be identified are listed in table 1. Current densities, 
equilibrium potentials and mixed potential are 
known.  
 

Table 1. The true values of the unknown parameters 
Reaction i0

true, mA αa
true 

1 17.68 0.53 
2 0.498 0.38 
3 2.509 0.413 
4 1.611 0.535 

 
Then coefficients (8) of the linear system (10) can be 
obtained and the parameters of interest can be 
estimated according to (41). Parameters estimated in 
that way are listed in table 2. 
 

Table 2.The best possible estimate 
Reaction i0

est, mA αa
est 

1 17.65 0.532 
2 0.494 0.370 
3 2.526 0.412 
4 1.561 0.525 

 
We observe that the true and identified parameters 
are different; however, it seems that this accuracy is 
quite enough for identification (the maximum error is 
about 3%)  
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Example 2. 
Here based on known equilibrium potentials and 

current densities we estimate time-varying mixed 
potential and unknown electrochemical parameters. 
We will use the same values for parameters to be 
identified as in the example 1. Estimated parameters 
are listed in table 3. 
 

Table 3. Estimates of electrochemical parameters 
Reaction i0

est, mA αa
est 

1 16.19 0.561 
2 0.52 0.404 
3 2.56 0.417 
4 1.64 0.533 

 
The mixed potential evolution in time and its 
estimate are depicted on figure 2. 
 

 
Fig. 2.  Mixed potential evolution in time. 

 
Knowledge of good average values of mixed 
potential is significant in the proposed identification 
algorithm. Otherwise though estimate of mixed 
potential still will track its true dynamics, the 
estimates of exchange current density and anodic 
apparent transfer coefficients will be biased.   
 
  
5 Conclusion 
In this work a novel identification procedure of 
nonlinear electroless nickel plating model was 
presented. The algorithm produces accurate and 
informative estimates results and can be used for 
synthesis of model-based control law, thickness alloy 
and phosphorous content estimation. 
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