
Machine and Business Modeling and Simulation for Workflow Integration

IOAN SALOMIE, TUDOR CIOARA, IONUT ANGHEL,

MIHAELA DINSOREANU, TUDOR IOAN SALOMIE

Department of Computer Science

Technical University of Cluj-Napoca

15 C.Daicoviciu street, Cluj-Napoca, 400020

ROMANIA

Ioan.Salomie@cs.utcluj.ro http://dsrl.coned.utcluj.ro

Abstract: This paper addresses the problems of modeling and simulating complex industrial production lines. The

paper proposes a methodology for building business models, organized on layers of increasing complexity, starting

from production line elementary machines and sensors up to complex business workflows. The resulted models could

be translated and executed by any workflow execution engines. For workflow testing purposes, a simulation

framework for production line elementary machines is proposed. The machine simulator is based on probabilistic state

machines, uses standards for describing business machine functionality and is exposed as a Web Service. The

proposed methodology and simulator were used for modeling and simulating a meat processing line developed in the

context of the Food Trace project.

Key-Words: Workflow, Simulation, Business process, State machine, Machine modeling, Web service

1 Introduction

Business services recently became the

fundamental element of large scale industrial systems,

therefore developing a significant market. Business

processes are represented as workflows and should be

able to collaborate and to be executed. Currently, a

number of methodologies and specific languages for

defining process interactions and collaborations were

developed. Business processes (BP) are defined

following business domain rules and can be classified in

two types: internal BP and external BP. Internal BP are

based on company specific information, modeling

complex company-specific processes such as industrial

workflows. External BP usually implies collaboration of

specific partners (organizations) from a business

domain, based on specific rules. Working directly with

internal or external business processes, before testing

them, usually can cause errors which may lead to

improper operation of the industrial system.

In the business services domain, activities like

simulation and online monitoring play a very important

role. The use of process simulation leads to detecting

errors in the process design such as structural errors due

to improper workflow and uncertainty errors deriving

from business process representation. After successful

detection of these errors we can use BP reengineering to

remodel and correct the BP.

For processes simulation, a model that

reproduces the real situation has to be created. Models

can only be used for simulation if they precisely follow

the original system. Modeling real systems is not always

a simple task because they are usually too complex to be

accurately described with mathematic models.

In the context of business process modeling and

execution, many simulation approaches have been

proposed. In [1] the authors present a process simulation

system based on interactive events. The system

simulates the interactions between composite services

and uses a Service Oriented Architecture. The proposed

system architecture is suited for the loosely coupled

service computing environments and is based on an

extension of the XPDL [2] meta-model. The

architecture incorporates interactive event flows

between individual workflows, explicitly modeled at

design time, while the event interactions with data

correlation are implemented at run time.

Another approach is SQMA (Situation-based

Qualitative Modeling and Analysis) model described in

[3]. The SQMA authors a model for representing and

simulating industrial systems using Rough Set Intervals.

The proposed model uses interval-based representation

for qualitative models for implementing the behavior of

real systems. The SQMA model hierarchically structures

the whole system and decomposes system’s levels into

components. After that, component variables are

modeled using intervals and characteristic values

represented as a one-value interval. Physical rules that

are used for the model verification are formulated using

interval arithmetic to complete the description of each

component. Using Rough Intervals and physical rules, a

transition matrix between components is constructed and

used in simulation. The main disadvantages of this

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 166

http://dsrl.coned.utcluj.ro/

approach consist of inaccurate representation of

machines business logic and difficulties in model

management. Another disadvantage is that using Rough

Set Intervals it is difficult to model complex business

scenarios involving more cooperating machines.

In [4], a framework for the simulation of

business process workflow models is discussed. The

approach uses BPEL language for modeling the

workflow which is transformed in a dataflow network

model. A model checker for verifying the correctness of

the workflow properties is used. Using graph theory and

Petri Nets, the authors have developed a framework for

fault simulation by inspecting the dataflow model.

Our approach on modeling and simulation of

business services is presented in the context of the

FOOD-TRACE research project [5]. The FOOD-

TRACE project aims to study and design an integrated

IT system for food industry processing organizations, in

response to the EU requirements regarding food

traceability and quality assurance. The system models

the production lines using internal business processes.

The objective of this paper is to develop

business modeling and simulation methods for workflow

integration and testing. This objective was achieved by:

(i) defining a methodology for the construction of

workflow models which follow specific business rules;

(ii) presenting a method for physical machines modeling

using probabilistic state machines; (iii) designing and

developing a simulator as a web service which uses the

state machine model to simulate the execution of

workflow models.

The rest of the paper is organized as follows. In

section 2, we present the layered architecture used for

workflow modeling and execution. In section 3, we

present the physical machine modeling through state

machines and the simulator design as a web service. To

illustrate the simulator’s functionality, a scenario is

presented in section 4. Section 5 gives conclusions and

promising future work.

2 A Layered Approach to Business

Process Modeling

One of the best ways to present high-level

business collaborations among different heterogeneous

and autonomous business processes is by using

workflows. Mapping real processes onto workflows is

an open research problem. Usually, this mapping is done

in two steps:

- the real processes are divided into simple processes

having basic functionality;

- the simple processes are represented as web services

interconnected by a workflow model.

There are several ways of representing

workflows. The main idea is to move business process

modeling closer to the user knowledge. Currently, two

approaches are used for describing business processes

and their internal collaboration and execution. The first

one involves using a visual modeling language that

generates an intermediary representation (for example

BPMN [6]) which is then converted into an executable

language such as BPEL [7]. The second approach

describes the processes directly in BPEL.

We have identified the following requirements

that should be addressed during workflow model design:

1. The need to abstract the business process concept by

eliminating workflow model irrelevant details;

2. The need to represent real processes into workflow

activities including traceability features. The model

should allow both upstream and downstream

traceability. Upstream traceability starts from row

materials and concludes to the final product.

Downstream traceability takes the product and

decomposes it into sub-products and traces them down

until the row materials.

3. The need to associate web services to workflow

activities.

The resulted workflow can be executed by

different BPEL Servers such as Oracle BPEL [8],

Microsoft BizTalk [9] or IBM Web Sphere [10].

Our approach uses BPEL and Microsoft

BizTalk Server for process modeling and workflow

representation and execution. Although BizTalk Server

is a friendly environment for designing organization

specific workflows, there are some problems that arise

from mapping the workflow to BPEL. An important

problem when using BizTalk Server is that not all the

elements used to model the workflow can be converted

into BPEL elements thus leading to incomplete

workflow-BPEL mapping. For example, BizTalk Server

workflow element Transform, that associates two

complex messages, doesn’t have a BPEL correspondent.

Following the identified requirements we

propose a layered architecture (Figure 1) based on

service orchestration [11] in which the services

communicate only with simple messages. The

advantages of using this architecture consist in (i)

reusing organization specific services, (ii) allowing

modeling of a wide range of business domains and (iii)

eliminating the incomplete workflow-BPEL mapping.

We have used an incremental methodology for

layer construction. We start from an initial layer that

contains physical or simulated machines of the

production line on which simple services from the ARR

layer are mapped. The rest of the layers are

incrementally generated, each increment generating a

new layer. A new layer is created if both of the

following two conditions hold:

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 167

- at least two processes could be identified on top of

the existing layers;

- there is at least one specific business rule that leads

to the interaction of the processes identified on the

topmost layer.

Business rules are derived from business domain or

company specific standards, policies and rules. Using

the set of business rules and process orchestration, new

business processes can be obtained. The layer

construction methodology formalism is given below:

(1) (Ln is created) (M={ P1 , P2…, Pk | k>1}) and

((N M, N,M Ln-1) or (N,M Ln-1 Ln-2… L1))

and (||N||≥2) and (BR | ORCS(N,BR)-> P Ln) and

(L1 ≡ ARR)

where Pi are the Ln-1 level process and ORCS(N,BR)

represents the orchestration of Ln-1 processes into a

process P on Ln level based on specific business rule.

In the context of the FOOD-TRACE project,

following the layer construction methodology, we have

identified four layers and we have developed the system

model workflow which follows the food industry

business rules. The four specific architectural layers are

described below (see Figure 1).

The ARR (Atomic Request/Reply) layer,

specifies the atomic services that use a request/reply

message exchange pattern. These services interact with

the physical level (real or simulated sensors or simple

machines), such as those responsible for acquiring the

production line parameters (temperature, humidity, etc.).

The SP (Simple Processes) layer is on top of the

ARR layer. This layer contains simple processes that are

obtained by composing or orchestrating the atomic

processes from the ARR layer using specific business

rules. A process is part of the SP layer if the following

holds:

(2) (P SP) (M={P1, P2…, Pk | k>1}M ARR),

 (||M||≥2) and (BR | ORCS(M,BR)->P SP)

where ORCS(M,BR) represents the orchestration of the

set M of ARR layer processes into a process P on SP

layer based on business rule BR.

Processes which correspond to a single machine from

the product line are included in this layer. For example,

the process of “meat cutting” corresponds to the meat

cutting machine. According to the business rules, the

“meat cutting” process orchestrates temperature

acquisition and machine starting from the ARR layer.

The CP (Complex Process) layer, defines

complex processes that involve a set of machines

working together for achieving a complex task. CP

process definition is given below:

(3) (P CP) (M={P1, P2…, Pk | k>1} M SP) or

(M SP ARR), (||M||≥2)) and

(BR | ORCS(M,BR) ->P CP)

where ORCS(M,BR) represents the orchestration of the

set M of SP and ARR layer processes into a process P

on CP layer based on a specific business rule BR.

For example, in the FOOD-TRACE project, consider the

process of mixing the meat with ingredients. This is a

complex process, which is executed by two machines:

the “add-ingredients” and the “mixing” machine.

The WF (Workflow) layer, is the topmost layer

representing the workflow which models a specific

product line. A workflow W is defined as follows:

(4) (W WF) ((M={P1, P2…, Pk | k>1}M CP)

or (M CP SP ARR), (||M||≥2)) and

(BR | ORCS(M,BR) ->W)

where ORCS(M,BR) represents the orchestration of the

set M of CP,SP and ARR layer processes into a process

P on CP layer based on a specific business rule BR.

The results of the workflow model execution are stored

in an internal repository and exposed through web

services to organization business partners such as the

Consumer Protection.

Fig. 1 Hierarchical Architecture for

Workflows

3 Physical Machine Modeling

In order to simulate the execution of the

proposed workflow model we have designed and

implemented a simulator based on nondeterministic,

probability-based, state machines. All physical machines

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 168

from a product line are modeled by state machines

having an associated graph representation. The states

and state-transitions of a physical machine are mapped

in the state machine model onto vertexes and edges,

respectively. The events that trigger state transitions of

physical machines are simulated by messages passed to

the state machine simulator. Each transition has an

associated probability which expresses the chance of

changing the current state with a next state. Also, the

transitions contain two timing constants which specify

how much time to wait before and after the transition.

The timing constants can be used to simulate processes

which need a given amount of time to complete. An

example of a real machine modeled as a state machine is

the meat cutting machine presented below.

Start

Acquire

Temp

[wait

100ms]

Check

Temp

Temp

is in normal

range

Error –

Temp

Cut meat

[wait

1000ms]

Cut finished

OK

Error -

Cutting

Stop

80% 20%

Start

Machine

Start

Cutting

Restart

Machine

Stop

Machine

90% 10%

Initial State

Final State

State

Event

[Message]

Probabilistic

branching

Fig. 2 Meat cutting state machine

Every physical machine, modeled as a state

machine, has a corresponding XML description having

the following elements:

- the root node is “stateMachine”. The “initialState”

parameter specifies the initial state of the state machine;

- in the messages section all the possible messages

(identified by name) used for event simulation of the

physical machine are defined;

- the list of states, each state being identified by an

integer value. The states can be of four types: auto,

message, error and final. The auto states automatically

advance from the current state to the next state,

depending on the contained “action” elements. The

message states wait for a message to advance. The error

states represent logical or physical errors the simulated

machine reached while the final states mark the end of

the state machine execution. The value of the state

identifier is a positive integer for message and auto type

states, negative for error states and zero for final states;

Fig. 3 XML meat cutting state machine

- the “action” elements contain the attributes

“nextState”, “waitBefore” and “waitAfter”. “nextState”

attribute is mandatory, and represents the name of the

next state if this action is chosen. The “waitBefore” and

“waitAfter” attributes are optional and express the

<stateMachine initialState="Start">

 <messages>

 <message name="StartMachine" />

 <message name="StartCutting" />

 <message name="RestartMachine" />

 <message name="StopMachine" />

 </messages>

 <state name="Start" type="message" id="0">

 <message name="StartMachine">

 <action nextState="AcquireTemp"/>

 </message>

 </state>

 <state name="AcquireTemp" type="auto" id="1">

 <action nextState="CheckTemp" />

 </state>

 <state name="CheckTemp" type="auto" id="2">

 <action probability="0.8" nextState="TempOK"

 waitBefore="100" />

 <action probability="0.2"

 nextState="ErrCheckingTemp" />

 </state>

 <state name="TempOK" type="message" id="3">

 <message name="StartCutting">

 <action nextState="Cut" />

 </message>

 </state>

 <state name="Cut" type="auto" id="4">

 <action probability="0.9" nextState="CutOK"

 waitBefore="1000" />

 <action probability="0.1" nextState="ErrCutting" />

 </state>

 <state name="CutOK" type="message" id="5">

 <message name="StopMachine">

 <action nextState="Stop" />

 </message>

 <message name="RestartMachine">

 <action nextState="Start" />

 </message>

 </state>

 <state name="ErrCheckingTemp" type="error" id="-1"

/>

 <state name="ErrCutting" type="error" id="-2" />

 <state name="Stop" type="final" id="0" />

</stateMachine>

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 169

amount of time to pause before and after executing the

actions, in milliseconds (if omitted, zero is assumed);

- “probability” is a real number in the interval [0.0 ..

1.0]. It determines the probability of a specific action to

be chosen. The sum of probabilities for a group (state

element for auto states and message element for

message states) must be 1.0. If some probabilities are

omitted, the remaining probability is distributed

amongst them (e.g. if we have 5 action elements and the

first has a probability of 0.1, the second one of 0.3 and

the rest are omitted, then the last three will each have a

equal probability of 0.2).

Figure 3 presents the XML definition of the state

machine which models the “meat cutting” state machine

from Figure 2.

The simulated execution of the proposed model

requires message passing between the workflow and the

simulator. This leads to developing the simulator

frontend as a web service. The web service simulator

communicates with the web services that model the

workflow through SOAP messages. The main simulator

functionality is exposed through the following web

service operations:
1. “InitializeStateMachine(stateMachineName: string)”

is used to create a new session of the web service that

will be used for the simulation of the state machine

specified by the parameter string. No other methods can

be invoked on the web service prior to successfully (true

is returned) executing this method.

2. “PostMessage(message: string)” is used to post a

message to the previously initialized state machine. The

method returns an integer value representing the state in

which the simulated machine is. The returned integer

value should be checked in order to see if it is a normal

state (message or auto) or an error or final state.

3. “GetStateNameForID(id: int)” returns a string

representing the name for the state represented by the

parameter id.

4. “ResetMachine()” is used to reset the machine to its

initial state and returns a Boolean value indicating the

operation success.

4 Simulation Scenarios

A workflow of a sausage preparing product line

was proposed as a simulation scenario (Figure 4). The

workflow model was constructed using the layered

construction methodology presented in Section 2.

Based on the scenario represented in Figure 4,

we have identified the following atomic request/reply

processes: getTemperature, getTime, getHumidity,

getOxidation, getWeight and machineStart/Stop. They

are represented as web services based on the

request/reply paradigm, which interacts directly with the

simulated or real machines. The simple processes of the

SP layer such as “meat-cutting”, “mixing” or “filling”

are constructed by orchestrating the atomic request/reply

web services.

Fig. 4 Workflow scenario

Using Microsoft BizTalk Server Orchestrator,

the simple services are represented as BizTalk

workflows, exported as BPEL processes and saved in a

database for a later use. For the complex processes level

in the layered architecture, we have identified the

process of “Mixing and Add-Ingredients”. Next, we

describe the simulation of the simple “Meat Cutting”

process (see process model in figures 2 and 3). The

workflow model for the “Meat Cutting” machine is

designed in Microsoft BizTalk Orchestrator.

BizTalk Workflow Model Simulator

InitializeStateMachine("MeatCuttingMachine")

true // machine initialized OK

PostMessage("StartMachine")

3 // stateID, Temperature is OK

PostMessage("StartCutting")

5 // stateID, Cutting finished with success

PostMessage("StopMachine")

0 // stateID, Final state reached w/o errors

Fig. 5 “Meat Cutting Machine” Simulation Sequence Diagram

The proper simulation is achieved by message

passing between the simulator web-service and the

BizTalk orchestration.

Raw materials reception
-Pork case

-Beef case

Traceability parameters

C.C.P.:
-Temperature (0°C)

-Time ()

-Humidity (5%)
-Oxidation (0.1%)

-Weight (Kg)

Meat Cutting

Traceability parameters

C.C.P.:
-Temperature (<5°C)

Mixing

Traceability parameters

C.C.P.:
-Temperature (0-3°C)

Add Ingredients

Filling

Traceability parameters

C.C.P.:
-Temperature (0-6°C)

-Weight (1Kg)

Start

Stop

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 170

The simulated execution is conducted by the

BizTalk representation of the workflow model. The

sequence diagram presented in Figure 5 describes a

successful simulation scenario for the “Meat Cutting

Machine”. The workflow model for the “Meat Cutting

Machine” described in BizTalk is showed in Figure 6.

Fig. 6 BizTalk workflow model

5 Conclusion and Future Development

This paper proposes a methodology for building

business models organized on layers of increasing

complexity from production lines elementary machines

and sensors to complex business workflows. The paper

also presents a method to simulate the execution of

business processes modeled as workflows. The

simulation process involves the following phases: (i) the

construction of workflow models which follow specific

business rules using the presented methodology; (ii)

modeling physical machines using probabilistic state

machines model; (iii) the simulated execution of

workflow models. In the context of the FOOD-TRACE

research project, for modeling and testing purposes, a

workflow model of a sausage preparing product line was

used as a simulation scenario. For future work, we

intend to improve the simulator by changing the state

machine runtime with the Microsoft Workflow

Foundation runtime [12]. This will allow the use of a

standard state machine XML based representation. Also

an inter business approach on simulation, which will

consider the collaboration among different business

partners, is a future enhancement of the simulator.

References:

[1] Yanchong Zheng, Yushun Fan, Wei Tan, Interactive-

Event-Based Workflow Simulation in Service Oriented

Computing, Fifth International Conference on Grid and

Cooperative Computing (GCC'06), 2006.

[2] XPDL specifications, http://www.wfmc.org/

standards/ xpdl.htm.

[3] M. Rebolledo, Rough intervals—enhancing intervals

for qualitative modeling of technical systems, Artificial

Intelligence 170, 667–685, 2006.

[4] Mate Kovacs, Laszlo Gonczy, Simulation and

Formal Analysis of Workflow Models, Electronic Notes

in Theoretical Computer Science, www.elsevier.nl/

locate/entcs.

[5] FOOD-TRACE project, http://www.coned.utcluj.ro/

FoodTrace/.

[6] BPMN (Business Process Modeling Notation),

http://www.bpmn.org/.

[7] BPEL4WS Specifications, http://www-128.ibm.com/

developerworks/library/specification/ws-bpel/.

[8] Oracle BPEL, www.oracle.com/technology/bpel

[9] Microsoft Biztalk Server 2006, http://www.micro

soft.com/biztalk/default.mspx.

[10] Web Sphere, www.ibm.com/software/ websphere.

[11] Service Orchestration, www.serviceoriented.org.

[12] Microsoft Workflow Foundation, wf.netfx3.com

[13] Moscato, F., Mazzocca, N., Vittorini, Workflow

Pattern Analysis in Web Services Orchestration: The

BPEL4WS Example, 1st International Conference on

High Performance Computing and Communications

2005, LNCS 3726, 395-400.

[14] Li, H., Lu, Z, Decentralized Workflow Modeling

and Execution in Service-Oriented Computing

Environment, IEEE International Workshop on Service-

Oriented System Engineering, 2005.

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 171

