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Abstract:  This paper addresses the problems of modeling and simulating complex industrial production lines. The 

paper proposes a methodology for building business models, organized on layers of increasing complexity, starting 

from production line elementary machines and sensors up to complex business workflows. The resulted models could 

be translated and executed by any workflow execution engines. For workflow testing purposes, a simulation 

framework for production line elementary machines is proposed. The machine simulator is based on probabilistic state 

machines, uses standards for describing business machine functionality and is exposed as a Web Service. The 

proposed methodology and simulator were used for modeling and simulating a meat processing line developed in the 

context of the Food Trace project. 
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1 Introduction 

 
Business services recently became the 

fundamental element of large scale industrial systems, 

therefore developing a significant market. Business 

processes are represented as workflows and should be 

able to collaborate and to be executed. Currently, a 

number of methodologies and specific languages for 

defining process interactions and collaborations were 

developed. Business processes (BP) are defined 

following business domain rules and can be classified in 

two types: internal BP and external BP. Internal BP are 

based on company specific information, modeling 

complex company-specific processes such as industrial 

workflows. External BP usually implies collaboration of 

specific partners (organizations) from a business 

domain, based on specific rules. Working directly with 

internal or external business processes, before testing 

them, usually can cause errors which may lead to 

improper operation of the industrial system. 

In the business services domain, activities like 

simulation and online monitoring play a very important 

role. The use of process simulation leads to detecting 

errors in the process design such as structural errors due 

to improper workflow and uncertainty errors deriving 

from business process representation. After successful 

detection of these errors we can use BP reengineering to 

remodel and correct the BP.  

For processes simulation, a model that 

reproduces the real situation has to be created. Models 

can only be used for simulation if they precisely follow 

the original system. Modeling real systems is not always 

a simple task because they are usually too complex to be 

accurately described with mathematic models. 

In the context of business process modeling and 

execution, many simulation approaches have been 

proposed. In [1] the authors present a process simulation 

system based on interactive events. The system 

simulates the interactions between composite services 

and uses a Service Oriented Architecture. The proposed 

system architecture is suited for the loosely coupled 

service computing environments and is based on an 

extension of the XPDL [2] meta-model.  The 

architecture incorporates interactive event flows 

between individual workflows, explicitly modeled at 

design time, while the event interactions with data 

correlation are implemented at run time. 

Another approach is SQMA (Situation-based 

Qualitative Modeling and Analysis) model described in 

[3].  The SQMA authors a model for representing and 

simulating industrial systems using Rough Set Intervals. 

The proposed model uses interval-based representation 

for qualitative models for implementing the behavior of 

real systems. The SQMA model hierarchically structures 

the whole system and decomposes system’s levels into 

components. After that, component variables are 

modeled using intervals and characteristic values 

represented as a one-value interval. Physical rules that 

are used for the model verification are formulated using 

interval arithmetic to complete the description of each 

component. Using Rough Intervals and physical rules, a 

transition matrix between components is constructed and 

used in simulation. The main disadvantages of this 
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approach consist of inaccurate representation of 

machines business logic and difficulties in model 

management. Another disadvantage is that using Rough 

Set Intervals it is difficult to model complex business 

scenarios involving more cooperating machines. 

In [4], a framework for the simulation of 

business process workflow models is discussed. The 

approach uses BPEL language for modeling the 

workflow which is transformed in a dataflow network 

model. A model checker for verifying the correctness of 

the workflow properties is used. Using graph theory and 

Petri Nets, the authors have developed a framework for 

fault simulation by inspecting the dataflow model. 

Our approach on modeling and simulation of 

business services is presented in the context of the 

FOOD-TRACE research project [5]. The FOOD-

TRACE project aims to study and design an integrated 

IT system for food industry processing organizations, in 

response to the EU requirements regarding food 

traceability and quality assurance. The system models 

the production lines using internal business processes.  

The objective of this paper is to develop 

business modeling and simulation methods for workflow 

integration and testing. This objective was achieved by: 

(i) defining a methodology for the construction of 

workflow models which follow specific business rules; 

(ii) presenting a method for physical machines modeling 

using probabilistic state machines; (iii) designing and 

developing a simulator as a web service which uses the 

state machine model to simulate the execution of 

workflow models.  

The rest of the paper is organized as follows. In 

section 2, we present the layered architecture used for 

workflow modeling and execution. In section 3, we 

present the physical machine modeling through state 

machines and the simulator design as a web service. To 

illustrate the simulator’s functionality, a scenario is 

presented in section 4. Section 5 gives conclusions and 

promising future work. 

 

2 A Layered Approach to Business 

Process Modeling  

 
One of the best ways to present high-level 

business collaborations among different heterogeneous 

and autonomous business processes is by using 

workflows. Mapping real processes onto workflows is 

an open research problem. Usually, this mapping is done 

in two steps:  

- the real processes are divided into simple processes 

having basic functionality; 

- the simple processes are represented as web services 

interconnected by a workflow model.  

There are several ways of representing 

workflows. The main idea is to move business process 

modeling closer to the user knowledge. Currently, two 

approaches are used for describing business processes 

and their internal collaboration and execution. The first 

one involves using a visual modeling language that 

generates an intermediary representation (for example 

BPMN [6]) which is then converted into an executable 

language such as BPEL [7]. The second approach 

describes the processes directly in BPEL.  

We have identified the following requirements 

that should be addressed during workflow model design:  

1. The need to abstract the business process concept by 

eliminating workflow model irrelevant details;  

2. The need to represent real processes into workflow 

activities including traceability features. The model 

should allow both upstream and downstream 

traceability. Upstream traceability starts from row 

materials and concludes to the final product. 

Downstream traceability takes the product and 

decomposes it into sub-products and traces them down 

until the row materials. 

3. The need to associate web services to workflow 

activities. 

The resulted workflow can be executed by 

different BPEL Servers such as Oracle BPEL [8], 

Microsoft BizTalk [9] or IBM Web Sphere [10]. 

Our approach uses BPEL and Microsoft 

BizTalk Server for process modeling and workflow 

representation and execution. Although BizTalk Server 

is a friendly environment for designing organization 

specific workflows, there are some problems that arise 

from mapping the workflow to BPEL. An important 

problem when using BizTalk Server is that not all the 

elements used to model the workflow can be converted 

into BPEL elements thus leading to incomplete 

workflow-BPEL mapping. For example, BizTalk Server 

workflow element Transform, that associates two 

complex messages, doesn’t have a BPEL correspondent. 

Following the identified requirements we 

propose a layered architecture (Figure 1) based on 

service orchestration [11] in which the services 

communicate only with simple messages. The 

advantages of using this architecture consist in (i) 

reusing organization specific services, (ii) allowing 

modeling of a wide range of business domains and (iii) 

eliminating the incomplete workflow-BPEL mapping. 

We have used an incremental methodology for 

layer construction. We start from an initial layer that 

contains physical or simulated machines of the 

production line on which simple services from the ARR 

layer are mapped. The rest of the layers are 

incrementally generated, each increment generating a 

new layer. A new layer is created if both of the 

following two conditions hold:  
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- at least two processes could be identified on top of 

the existing layers; 

- there is at least one specific business rule that leads 

to the interaction of the processes identified on the 

topmost layer.  

Business rules are derived from business domain or 

company specific standards, policies and rules. Using 

the set of business rules and process orchestration, new 

business processes can be obtained. The layer 

construction methodology formalism is given below: 

 

(1) (Ln is created)  ( M={ P1  , P2…, Pk | k>1}) and                     

((  N M, N,M Ln-1) or (N,M Ln-1  Ln-2…  L1)) 

and (||N||≥2) and ( BR | ORCS(N,BR)-> P  Ln) and  

(L1 ≡ ARR) 

 

where Pi are the Ln-1 level process and ORCS(N,BR) 

represents the orchestration of  Ln-1  processes into a 

process P on Ln  level based on specific business rule. 

In the context of the FOOD-TRACE project, 

following the layer construction methodology, we have 

identified four layers and we have developed the system 

model workflow which follows the food industry 

business rules. The four specific architectural layers are 

described below (see Figure 1). 

The ARR (Atomic Request/Reply) layer, 

specifies the atomic services that use a request/reply 

message exchange pattern. These services interact with 

the physical level (real or simulated sensors or simple 

machines), such as those responsible for acquiring the 

production line parameters (temperature, humidity, etc.).  

The SP (Simple Processes) layer is on top of the 

ARR layer. This layer contains simple processes that are 

obtained by composing or orchestrating the atomic 

processes from the ARR layer using specific business 

rules. A process is part of the SP layer if the following 

holds: 

 

(2) (P SP) (  M={P1, P2…, Pk | k>1}M ARR),     

 (||M||≥2) and ( BR | ORCS(M,BR)->P SP) 

 

where ORCS(M,BR) represents the orchestration of the 

set M of ARR layer  processes into a process P on SP  

layer based on business rule BR.  

Processes which correspond to a single machine from 

the product line are included in this layer. For example, 

the process of “meat cutting” corresponds to the meat 

cutting machine. According to the business rules, the 

“meat cutting” process orchestrates temperature 

acquisition and machine starting from the ARR layer. 

The CP (Complex Process) layer, defines 

complex processes that involve a set of machines 

working together for achieving a complex task. CP 

process definition is given below: 

 

(3) (P CP)  (  M={P1, P2…, Pk | k>1} M SP) or 

(M SP ARR), (||M||≥2)  ) and  

( BR | ORCS(M,BR) ->P CP) 

 

where ORCS(M,BR) represents the orchestration of the 

set M of SP and ARR layer  processes into a process P 

on CP  layer based on a specific business rule BR.  

For example, in the FOOD-TRACE project, consider the 

process of mixing the meat with ingredients. This is a 

complex process, which is executed by two machines: 

the “add-ingredients” and the “mixing” machine.  

The WF (Workflow) layer, is the topmost layer 

representing the workflow which models a specific 

product line. A workflow W is defined as follows: 

 

(4) (W WF)  ((  M={P1, P2…, Pk | k>1}M CP) 

or (M CP SP  ARR), (||M||≥2)) and  

( BR | ORCS(M,BR) ->W) 

 

where ORCS(M,BR) represents the orchestration of the 

set M of CP,SP and ARR layer  processes into a process 

P on CP  layer based on a specific business rule BR.  

The results of the workflow model execution are stored 

in an internal repository and exposed through web 

services to organization business partners such as the 

Consumer Protection.  

 

 
Fig. 1 Hierarchical Architecture for 

Workflows 

 

3 Physical Machine Modeling 

 
In order to simulate the execution of the 

proposed workflow model we have designed and 

implemented a simulator based on nondeterministic, 

probability-based, state machines. All physical machines 
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from a product line are modeled by state machines 

having an associated graph representation. The states 

and state-transitions of a physical machine are mapped 

in the state machine model onto vertexes and edges, 

respectively. The events that trigger state transitions of 

physical machines are simulated by messages passed to 

the state machine simulator. Each transition has an 

associated probability which expresses the chance of 

changing the current state with a next state. Also, the 

transitions contain two timing constants which specify 

how much time to wait before and after the transition. 

The timing constants can be used to simulate processes 

which need a given amount of time to complete. An 

example of a real machine modeled as a state machine is 

the meat cutting machine presented below. 

 

Start

Acquire 

Temp

[wait 

100ms]

Check 

Temp

Temp 

is in normal 

range

Error – 

Temp

Cut meat

[wait 

1000ms]

Cut finished 

OK

Error - 

Cutting

Stop

80% 20%

Start 

Machine

Start 

Cutting

Restart 

Machine

Stop 

Machine

90% 10%

Initial State

Final State

State

Event 

[Message]

Probabilistic 

branching

 
Fig. 2 Meat cutting state machine 

 

Every physical machine, modeled as a state 

machine, has a corresponding XML description having 

the following elements: 

- the root node is “stateMachine”. The “initialState” 

parameter specifies the initial state of the state machine;  

- in the messages section all the possible messages 

(identified by name) used for  event simulation of the 

physical machine are defined;  

- the list of states, each state being identified by an 

integer value. The states can be of four types: auto, 

message, error and final. The auto states automatically 

advance from the current state to the next state, 

depending on the contained “action” elements. The 

message states wait for a message to advance. The error 

states represent logical or physical errors the simulated 

machine reached while the final states mark the end of 

the state machine execution. The value of the state 

identifier is a positive integer for message and auto type 

states, negative for error states and zero for final states; 

 

Fig. 3 XML meat cutting state machine 

 

- the “action” elements contain the attributes  

“nextState”, “waitBefore” and “waitAfter”. “nextState” 

attribute is mandatory, and represents the name of the 

next state if this action is chosen. The “waitBefore” and 

“waitAfter” attributes are optional and express the 

<stateMachine initialState="Start"> 

  <messages> 

    <message name="StartMachine" /> 

    <message name="StartCutting" /> 

    <message name="RestartMachine" /> 

    <message name="StopMachine" /> 

  </messages> 

  <state name="Start" type="message" id="0"> 

    <message name="StartMachine"> 

      <action nextState="AcquireTemp"/> 

    </message> 

  </state> 

  <state name="AcquireTemp" type="auto" id="1"> 

    <action nextState="CheckTemp" /> 

  </state> 

  <state name="CheckTemp" type="auto" id="2"> 

    <action probability="0.8" nextState="TempOK"      

                                               waitBefore="100" /> 

    <action probability="0.2"  

                 nextState="ErrCheckingTemp" /> 

  </state> 

  <state name="TempOK" type="message" id="3"> 

    <message name="StartCutting"> 

      <action nextState="Cut" /> 

    </message> 

  </state> 

  <state name="Cut" type="auto" id="4"> 

    <action probability="0.9" nextState="CutOK"        

                                               waitBefore="1000" /> 

    <action probability="0.1" nextState="ErrCutting" /> 

  </state> 

  <state name="CutOK" type="message" id="5"> 

    <message name="StopMachine"> 

      <action nextState="Stop" /> 

    </message> 

    <message name="RestartMachine"> 

      <action nextState="Start" /> 

    </message> 

  </state> 

  <state name="ErrCheckingTemp" type="error" id="-1" 

/> 

  <state name="ErrCutting" type="error" id="-2" /> 

  <state name="Stop" type="final" id="0" /> 

</stateMachine> 
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amount of time to pause before and after executing the 

actions, in milliseconds (if omitted, zero is assumed);  

- “probability” is a real number in the interval [0.0 ..  

1.0]. It determines the probability of a specific action to 

be chosen. The sum of probabilities for a group (state 

element for auto states and message element for 

message states) must be 1.0. If some probabilities are 

omitted, the remaining probability is distributed 

amongst them (e.g. if we have 5 action elements and the 

first has a probability of 0.1, the second one of 0.3 and 

the rest are omitted, then the last three will each have a  

equal probability of 0.2).  

Figure 3 presents the XML definition of the state 

machine which models the “meat cutting” state machine 

from Figure 2. 

The simulated execution of the proposed model 

requires message passing between the workflow and the 

simulator. This leads to developing the simulator 

frontend as a web service. The web service simulator 

communicates with the web services that model the 

workflow through SOAP messages. The main simulator 

functionality is exposed through the following web 

service operations: 
1. “InitializeStateMachine(stateMachineName: string)” 

is used to create a new session of the web service that 

will be used for the simulation of the state machine 

specified by the parameter string. No other methods can 

be invoked on the web service prior to successfully (true 

is returned) executing this method. 

2. “PostMessage(message: string)” is used to post a 

message to the previously initialized state machine. The 

method returns an integer value representing the state in 

which the simulated machine is. The returned integer 

value should be checked in order to see if it is a normal 

state (message or auto) or an error or final state. 

3. “GetStateNameForID(id: int)” returns a string 

representing the name for the state represented by the 

parameter id.  

4. “ResetMachine()” is used to reset the machine to its 

initial state and returns a Boolean value indicating the 

operation success. 

 

4 Simulation Scenarios 
 

A workflow of a sausage preparing product line 

was proposed as a simulation scenario (Figure 4). The 

workflow model was constructed using the layered 

construction methodology presented in Section 2.  

Based on the scenario represented in Figure 4, 

we have identified the following atomic request/reply 

processes: getTemperature, getTime, getHumidity, 

getOxidation, getWeight and machineStart/Stop.  They 

are represented as web services based on the 

request/reply paradigm, which interacts directly with the 

simulated or real machines. The simple processes of the 

SP layer such as “meat-cutting”, “mixing” or “filling” 

are constructed by orchestrating the atomic request/reply 

web services.  

 

 

Fig. 4 Workflow scenario 

 

Using Microsoft BizTalk Server Orchestrator, 

the simple services are represented as BizTalk 

workflows, exported as BPEL processes and saved in a 

database for a later use. For the complex processes level 

in the layered architecture, we have identified the 

process of “Mixing and Add-Ingredients”. Next, we 

describe the simulation of the simple “Meat Cutting” 

process (see process model in figures 2 and 3). The 

workflow model for the “Meat Cutting” machine is 

designed in Microsoft BizTalk Orchestrator.  

 

BizTalk Workflow Model Simulator

InitializeStateMachine("MeatCuttingMachine")

true     // machine initialized OK

PostMessage("StartMachine")

3     // stateID, Temperature is OK

PostMessage("StartCutting")

5     // stateID, Cutting finished with success

PostMessage("StopMachine")

0     // stateID, Final state reached w/o errors

 
Fig. 5 “Meat Cutting Machine” Simulation Sequence Diagram 

 

The proper simulation is achieved by message 

passing between the simulator web-service and the 

BizTalk orchestration.  

Raw materials reception 
-Pork case 

-Beef case 

Traceability parameters  

C.C.P.: 
-Temperature (0°C) 

-Time () 

-Humidity (5%) 
-Oxidation (0.1%)  

-Weight (Kg) 

 

 

Meat Cutting  

Traceability parameters  

C.C.P.: 
-Temperature (<5°C) 

Mixing 

Traceability parameters  

C.C.P.: 
-Temperature (0-3°C) 

 

Add Ingredients 

 

Filling 

Traceability parameters  

C.C.P.: 
-Temperature (0-6°C) 

-Weight (1Kg) 

 

Start 

Stop 
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The simulated execution is conducted by the 

BizTalk representation of the workflow model. The 

sequence diagram presented in Figure 5 describes a 

successful simulation scenario for the “Meat Cutting 

Machine”. The workflow model for the “Meat Cutting 

Machine” described in BizTalk is showed in Figure 6. 

 

 
Fig. 6 BizTalk workflow model  

 

 

5 Conclusion and Future Development 
 

This paper proposes a methodology for building 

business models organized on layers of increasing 

complexity from production lines elementary machines 

and sensors to complex business workflows. The paper 

also presents a method to simulate the execution of 

business processes modeled as workflows. The 

simulation process involves the following phases: (i) the 

construction of workflow models which follow specific 

business rules using the presented methodology; (ii) 

modeling physical machines using probabilistic state 

machines model; (iii) the simulated execution of 

workflow models. In the context of the FOOD-TRACE 

research project, for modeling and testing purposes, a 

workflow model of a sausage preparing product line was 

used as a simulation scenario. For future work, we 

intend to improve the simulator by changing the state 

machine runtime with the Microsoft Workflow 

Foundation runtime [12]. This will allow the use of a 

standard state machine XML based representation. Also 

an inter business approach on simulation, which will 

consider the collaboration among different business 

partners, is a future enhancement of the simulator. 

 

References: 

 

[1] Yanchong Zheng, Yushun Fan, Wei Tan, Interactive-

Event-Based Workflow Simulation in Service Oriented 

Computing, Fifth International Conference on Grid and 

Cooperative Computing (GCC'06), 2006. 

[2] XPDL specifications, http://www.wfmc.org/ 

standards/ xpdl.htm. 

[3] M. Rebolledo, Rough intervals—enhancing intervals 

for qualitative modeling of technical systems, Artificial 

Intelligence 170, 667–685, 2006. 

[4] Mate Kovacs, Laszlo Gonczy, Simulation and 

Formal Analysis of Workflow Models, Electronic Notes 

in Theoretical Computer Science, www.elsevier.nl/ 

locate/entcs. 

[5] FOOD-TRACE project, http://www.coned.utcluj.ro/ 

FoodTrace/. 

[6] BPMN (Business Process Modeling Notation), 

http://www.bpmn.org/. 

[7] BPEL4WS Specifications, http://www-128.ibm.com/ 

developerworks/library/specification/ws-bpel/. 

[8] Oracle BPEL, www.oracle.com/technology/bpel 

[9] Microsoft Biztalk Server 2006, http://www.micro 

soft.com/biztalk/default.mspx. 

[10] Web Sphere, www.ibm.com/software/ websphere. 

[11] Service Orchestration, www.serviceoriented.org. 

[12] Microsoft Workflow Foundation, wf.netfx3.com 

[13] Moscato, F., Mazzocca, N., Vittorini, Workflow 

Pattern Analysis in Web Services Orchestration: The 

BPEL4WS Example, 1st International Conference on 

High Performance Computing and Communications 

2005, LNCS 3726, 395-400. 

[14] Li, H., Lu, Z, Decentralized Workflow Modeling 

and Execution in Service-Oriented Computing 

Environment, IEEE International Workshop on Service-

Oriented System Engineering, 2005. 

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007      171


