
Sliding Modes in Finite-Time Control Systems with Variable 

Structure 
 

GAZENFER RUSTAMOV
(*)

, MANAFADDIN NAMAZOV
(**)

, REFIK SAMET
(***) 

(*)
 Department of Automation and Control Systems, Azerbaijan Technical University, 

                   H.Javid avenue, 25, AZ1073, Baku, AZERBAIJAN, flpnigar@yahoo.com 
(**)

 Department of Electrical and Electronics Engineering, Cumhuriyet University, 58140, 

                         Sivas, TURKEY, mnamazov@cumhuriyet.edu.tr 
(***) 

Department of Computer Engineering, Ankara University, 06100, Ord.Prof.Dr.Sevket 

                      Kansu Binasi, Tandogan, Ankara, TURKEY, samet@eng.ankara.edu.tr 
 

 

Abstract: - This paper proposes a method for the organization of real sliding movements, which are caused by finite 

switching frequency of control systems. In one of two proposed structures for the organization of sliding modes, the 

control is formed according to the principle of feedback connections; in the other proposed structure, the control is 

formed according to the principle of discrete control where the discrete levels are defined by crossing (hitting) points 

on a hyperplane. The proposed method allows users to solve practically oriented problems of organization of sliding 

movements while taking into account real boundaries existing in systems. The proposed models are simulated using 

MATLAB/SIMULINK. 
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1   Introduction 
Many control, identification and estimation problems in 

conditions of parametrical uncertainty find effective 

solutions through creation of sliding modes [1]-[8]. In 

these modes, after some period of time, a movement of 

the system takes place in a small vicinity of the given 

hyperplane, whose position does not depend on 

parameters of objects. Therefore it is possible to obtain 

stable dynamic parameters, despite a change of object 

parameters over a wide range. The organization of such a 

mechanism of movement is reached due to high-

frequency switching of separate structures at the 

moments of flight of a representative point of the given 

plane. 

     In control systems, because of inertia properties of 

the actuators and objects, an application of high-

frequency intermittent control is always limited. For this 

reason, a reduction of the control switching frequency in 

sliding modes and its coordination with frequency 

characteristics of real objects has been a problem in all 

periods of development of the theory and practice of 

Variable Structure Control (VSC). With the purpose of 

to avoid strict mathematical formalization and to 

improve the system serviceability, designers have started 

to use an indistinct sliding mode [9]. 

     Reduction of frequency by itself does not create a 

special difficulty. The basic problem consists of 

providing the closeness of a phase trajectory to a sliding 

surface during change of object parameters over a wide 

range. 

     In this paper, we propose a completely novel method 

of organization of the sliding mode. We have named this 

sliding mode as «Point Sliding Mode Control» (PSMC). 

In [10], PSMC has been used for stabilization of second 

order non-stationary objects. In this study, the results of 

[10], also taking in account [11], are distributed on n
th
 

order objects with Single Input and Single Output 

(SISO) and all possible modes in finite-time VSC 

systems are also investigated. 

 

 

2   State of Problem 
Let us consider a completely controlled object described 

in the state space model, 

 

ButAxtx += )()(& , 1xy = ,                  (1) 

 

where, 
nRx∈  is the measured state vector; u is the 

scalar control variable; A  is the n -by- n  system matrix; 

B  is the n -by-1 input matrix; y  is the observable 

output. 

     The problem is to find control variable ),( txu , 

which will force the object (1) to change its state from 

any initial condition 
nRx ∈0  at the moment of time 

0=t  into a point 0=x  for finite time )( 0xT  and 

establish the system in this point for )( 0xTt ≥ : 
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where 
T

n

T kkkK ),...,,( 211 =  is a vector coefficient of 

amplification of the first (linear) structure; 

1,...,2,1,),(2 −== njikK ij  is a matrix coefficient of 

amplification of the second structure; 

),...,,1()( 2−= ntttR  is a vector of nonlinear functions; 

21)( ssx =σ  is a switching function; 0)1,( 11 == xcs , 

0)1,( 22 == xcs  are switching hyperplanes; 

),...,,( 1,112111 −= ncccc , ),...,,( 1,222212 −= ncccc  are 

vectors of angular coefficients; 
*

sx  is the constant vector 

formed from the first n-1 coordinate of a crossing points 

sx of a phase trajectory on a hyperplane 01 =s ; 

{ }0:),( 1.

* =∈= sxxxx T

sn

T

ss . If { }0:0 ≤∈ σxx , 

then 0: xxs = . 

 

 

3   Solution Models 
We do not discuss in detail the techniques for definition 

of adjustment parameters 121 ,, cKK  and 2с , which 

are described in [12]. 

     The vector coefficient of amplification 1K  is 

determined from a condition of crossing the phase 

trajectories from { }0:0 >∈ σxx  on 01 =s . This 

requirement can be executed on oscillatory trajectories 

such as a steady or unstable spiral or on conservative 

ellipsoids. For such trajectories the values of a 

characteristic matrix 
TBKAD −=  are in a complex-

connected ωα jp ıı ±= . 

     Proceeding from this, 1K  is defined on the basis of 

the solution of a problem of modal control (a problem of 

distribution of poles and zeros) with the determinant 

equation: 
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where 21 /nn = , 2/)1(2 −= nn . 

     Elements 1K  are defined for given values iα , iϖ  

and 1p  as a result of the solution of a system of 

algebraic equations made on a basis (3), by equating the 

coefficients at identical degrees of the operator p . 

Parameters iα , iϖ  and 1p  can be determined with 

taking into account the restrictions on 1K . 

     Matrix coefficient of amplification 2K  and 1c  are 

defined from a condition of crossing of a phase 

trajectory )(tx  from any point of a hyperplane 01 =s  at 

coordinate origin 0)( =stx : 

 
1

2

−−= HK ,  ,Hhc n

1

1

−−=                (4) 

 

where, 
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     Here, nh  is the last row in n -by- )1( −n  matrix Φ ; 

),0( ∞∈st  is the given time of movement of the system 

in the second structure, i.e. at 0<σ . Parameter st  can 

be determined in view of the speed and restrictions on 

2K . 

     In practical tasks, frequently, 2=n . Thus, the 

control (2) becomes: 
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     As we see from (6), a programming control  

sxkuu 1112 ==  is transformed into constant control, 

whose amplitude is corrected depending on the axis sx1  

of the crossing points of a trajectory on a line of 

switching 0211 =+= xcxs . Hence, we get the relay-

linear finite-time control with a variable level of a relay 

signal. 

 

 

4   Simulation of Modes in Finite-Time 

Systems with Variable Structure 

We will demonstrate various modes for the double 

integrator, 

 

1221 xy,bux,xx === && ,             (7) 

 

with the control algorithm (6). 

     The modeling scheme of the stabilization system 

using SIMULINK is shown in Fig.1.  
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Fig.1 The modeling scheme of the stabilization system 

 

 

4.1 Finite-Time Mode 
In this mode, according to (4), there is a strict equality 

between parameters 1c  and 2K  of adjustment of the 

second structure: 

 

21 Khc n=                                       (8) 

 

     At satisfaction (8), the given point 0=x  is reached 

for finite time and for minimal number of switching, 

independent of the system order, namely, from an initial 

condition { }0:0 ≥∈ σxx  - for one, and from 

{ }0:0 ≤∈ σxx  - for two switching. 

     Choosing 11 =k  and 02 =k  on basis (3) for the first 

structure, we shall have ellipsoids. The condition (8) for 

the double integrator becomes: 11

2 2bkc = . From here, 

at 1=b , we choose 111 =k  and 2=c . Thus the 

phase trajectories will consist of parabolas. The 

transitive characteristics and a phase portrait of the 

stabilization system in finite-time mode are shown in 

Fig.2 a and b, respectively. 

 

 
(а) 

 

 

t 

(b) 

Fig.2 Dynamic characteristics of system in finite-time 

mode 

 

 

4.2 Point Sliding Mode 
The sliding movement obtained in this mode differs in 

that the breaks in control on a plane 01 =s  take place in 

the isolated points placed in equal time intervals θ . 

Thus, the trajectory between points of switching remains 

in a small vicinity of the plane 01 =s . Necessarily, the 

step of movement in Point Sliding Mode (PSM) can be 

adjusted on an interval ),0( st∈θ . 

     For the double integrator (7), 

)/()(2 1111

2 bckbkc −=θ . The parameter st/θµ =  

can be characterized as "completeness" of a point sliding 

mode ]1,0[∈µ . For example, in finite-time mode, 

1=⇒= µθ st . According to the increase in frequency 

of switching, µ  is decreased. The condition of 

execution of PSMC for the double integrator (7) looks 

like: bckbc /2/ 2

11

2 << . 

     The transitive characteristics and a phase portrait of 

the stabilization system in PSMC are shown in Fig.3 a 
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and b, respectively, for 1=b , 11 =k , 02 =k , 

111 =k , 1,1=c ; sec38.0=θ , 27.0=µ . 

 

 
(a) 

 
(b) 

Fig.3 Dynamic characteristics of system in PSM 

 

     As we see from Fig.3 b, a trajectory does practically 

not differ from line 0=s  after crossing it. 

     At 0<θ , PSM does not differ from a usual sliding 

mode. Thus, the obtained bck /2

11 >  coincides with a 

condition followed from [2]. 

     The dynamic characteristics of PSM are shown in 

Fig.4 a and b for 0<θ . The system was simulated for 

1=b , 35.0,1,0,1 1121 −=⇒==== θckkk . 

 

 
(a) 

 
(b) 

Fig.4 Dynamic characteristics of system in a usual 

sliding mode 

 

     For 2,1,1 11 === ckb , time 

12 =⇒== µθ st . An increase of amplification 

coefficient b of object twice reduces the "completeness" 

PSM up to 0=µ . On further increases of b , the 

parameter 0<µ  and PSM is estimated as a usual 

sliding mode. Keeping the control switching frequency 

at the given level, i.e. providing a condition 

0>= constµ , can be provided by fine tuning 

parameters 11k  and (or) c . 

     As is shown from Fig.4, at the values of regulator 

parameters chosen here, PSM practically does not differ 

from a usual sliding mode. 

 

 

4.3 Switching Mode 
This mode practically does not differ from a switching 

mode that takes place in the usual VSC and this mode is 

characterized by oscillatory transient process. In this 

case, the parameters of system (7) and (6) satisfy a 

condition bck 2/0 2

11 <≤ . 

     The dynamic characteristics of a switching mode are 

shown in Fig.5, for 1=b , 

2,1,0,1 1121 ==== ckkk . 

 
(a) 
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(b) 

Fig.5 Dynamic characteristics of system in a switching 

mode 

 

     The analysis of system speed on a basis (6) shows 

that at identical coefficients of amplification the greatest 

speed sec3.2≈kt  is reached for finite time mode. 

Depending on the control switching frequency increase, 

the system speed is reduced. Thus, in case of a sliding 

mode with 3−=θ , 8≈kt sec (Fig.4). 

 

 

5   Conclusion 
In summary, it is possible to come to the following 

conclusions: 

     1. The proposed method of organization of sliding 

modes allows us to expand essentially set of combined 

phase structures in VSC. 

     2. The proposed point sliding mode allows us to 

reduce control switching frequency and, hence to expand 

the area of practical application of VSC systems. 

     3. The systems with the point sliding mode can be 

used for control objects with nonstationary and nonstable 

parameters. This mode can be implicated to such objects 

as electromechanical, technical, electronics, etc. systems 

from different areas of techniques and technologies. 

     4. During the changes of system parameters over a 

wide range, the control switching frequency can be 

supported at a constant level by fine tuning of regulator 

parameters.  

     5. Modeling researches of the system using the 

SIMULINK package have produced a number of the 

positive results of important practical interest. 
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